See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/316770538](https://www.researchgate.net/publication/316770538_On_the_computational_efficiency_of_subgradient_methods_a_case_study_with_Lagrangian_bounds?enrichId=rgreq-13aa48a501196ed0782ef16c814a4d0a-XXX&enrichSource=Y292ZXJQYWdlOzMxNjc3MDUzODtBUzo0OTc1MDk3ODA5NDY5NDRAMTQ5NTYyNjk4MzUyOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

On the [computational](https://www.researchgate.net/publication/316770538_On_the_computational_efficiency_of_subgradient_methods_a_case_study_with_Lagrangian_bounds?enrichId=rgreq-13aa48a501196ed0782ef16c814a4d0a-XXX&enrichSource=Y292ZXJQYWdlOzMxNjc3MDUzODtBUzo0OTc1MDk3ODA5NDY5NDRAMTQ5NTYyNjk4MzUyOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf) efficiency of subgradient methods: a case study with Lagrangian bounds

Article in Mathematical Programming Computation · May 2017

DOI: 10.1007/s12532-017-0120-7

Some of the authors of this publication are also working on these related projects:

Delay-constrained Routing View [project](https://www.researchgate.net/project/Delay-constrained-Routing?enrichId=rgreq-13aa48a501196ed0782ef16c814a4d0a-XXX&enrichSource=Y292ZXJQYWdlOzMxNjc3MDUzODtBUzo0OTc1MDk3ODA5NDY5NDRAMTQ5NTYyNjk4MzUyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf)

Modeling and solving a logging camp location problem View [project](https://www.researchgate.net/project/Modeling-and-solving-a-logging-camp-location-problem?enrichId=rgreq-13aa48a501196ed0782ef16c814a4d0a-XXX&enrichSource=Y292ZXJQYWdlOzMxNjc3MDUzODtBUzo0OTc1MDk3ODA5NDY5NDRAMTQ5NTYyNjk4MzUyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf)

All content following this page was uploaded by [Frangioni](https://www.researchgate.net/profile/Frangioni_Antonio?enrichId=rgreq-13aa48a501196ed0782ef16c814a4d0a-XXX&enrichSource=Y292ZXJQYWdlOzMxNjc3MDUzODtBUzo0OTc1MDk3ODA5NDY5NDRAMTQ5NTYyNjk4MzUyOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf) Antonio on 24 May 2017.

¹ On the computational efficiency of subgradient methods: a case study with Lagrangian bounds

- Antonio Frangioni · Bernard Gendron ·
- Enrico Gorgone

the date of receipt and acceptance should be inserted later

 Abstract Subgradient methods (SM) have long been the preferred way to solve the large-scale Nondifferentiable Optimization problems arising from the solution of Lagrangian Duals (LD) of Integer Programs (IP). Although other methods can have better convergence rate in practice, SM have certain advan- tages that may make them competitive under the right conditions. Further- more, SM have significantly progressed in recent years, and new versions have been proposed with better theoretical and practical performances in some ap- plications. We computationally evaluate a large class of SM in order to assess if these improvements carry over to the IP setting. For this we build a unified scheme that covers many of the SM proposed in the literature, comprised some often overlooked features like projection and dynamic generation of variables. We fine-tune the many algorithmic parameters of the resulting large class of SM, and we test them on two different Lagrangian duals of the Fixed-Charge Multicommodity Capacitated Network Design problem, in order to assess the ²¹ impact of the characteristics of the problem on the optimal algorithmic choices. Our results show that, if extensive tuning is performed, SM can be competitive with more sophisticated approaches when the tolerance required for solution is not too tight, which is the case when solving LDs of IPs.

Keywords Subgradient methods, Nondifferentiable Optimization, Compu-

tational analysis, Lagrangian relaxation, Multicommodity Network Design

Antonio Frangioni

Dipartimento di Informatica, Universit`a di Pisa, E-mail: frangio@di.unipi.it

Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport (CIRRELT), and Department of Computer Science and Operations Research, Université de Montréal, E-mail: Bernard.Gendron@cirrelt.ca

Enrico Gorgone

Bernard Gendron

Dipartimento di Matematica ed Informatica, Universit`a di Cagliari, E-mail: egorgone@unica.it, and Indian Institute of Management Bangalore (IIMB), E-mail: enrico.gorgone@iimb.ernet.in

²⁷ Mathematics Subject Classification (2000) 90C06 · 90C25

²⁸ 1 Introduction

²⁹ The aim of this paper is to computationally evaluate a large family of ap-³⁰ proaches for the solution of problems of the form

$$
f_* = \min\left\{ f(\lambda) = \sum_{k \in \mathcal{K}} f^k(\lambda) \; : \; \lambda \in \Lambda \right\} \tag{1}
$$

31 where K is a finite index set, $\Lambda \subseteq \mathbb{R}^n$ is closed, convex and "easy" in the sense that projection upon Λ is inexpensive, and $f^k: \mathbb{R}^n \to \mathbb{R}$ are proper con-³³ vex functions. The generalized gradient descent method, a.k.a. the Subgradient ³⁴ Method (SM), is the extension of the gradient method for smooth optimiza-³⁵ tion introduced in the 60s [\[61\]](#page-31-0) that solves [\(1\)](#page-2-0) under very mild conditions. ³⁶ In particular, each of the functions f^k need only be known through a "black" 37 box" that, given $\lambda \in \Lambda$, returns the function value $f^k(\lambda)$ and a subgradient $g^k \in \partial f^k(\lambda)$. Then, after computing $f(\lambda)$ according to [\(1\)](#page-2-0), and similarly for 38 ³⁹ $\sum_{k \in \mathcal{K}} g^k = g \in \partial f(\lambda)$, the algorithm employs the simple recurrence formula

$$
\tilde{\lambda}_{i+1} = \lambda_i - \nu_i g_i \quad , \quad \lambda_{i+1} = \mathcal{P}_\Lambda(\tilde{\lambda}_{i+1}), \tag{2}
$$

 $_{40}$ where P denotes the orthogonal projection on A. Only very simple rules are 41 required to the *stepsize* $\nu_i \in \mathbb{R}_+$ to ensure that the sequence $\{f_i = f(\lambda_i)\}\$ 42 asymptotically solves [\(1\)](#page-2-0), i.e., $\liminf_{i\to\infty} f_i = f_\infty = f_*$. Under mild additional 43 assumptions, cluster points of $\{\lambda_i\}$ also are optimal solutions to [\(1\)](#page-2-0).

SM require $\Theta(1/\epsilon^2)$ iterations to solve [\(1\)](#page-2-0) up to absolute error ϵ , which ⁴⁵ means that they are not practical for attaining any more than a modest ac-⁴⁶ curacy. Yet, that is also the *best* possible worst-case complexity for the min-⁴⁷ imization of a generic nondifferentiable function only known via a black box 48 [\[51\]](#page-30-0). Besides, the complexity is independent of the size n of the problem. ⁴⁹ Therefore, SM may be promising for very-large-scale problems where a high ⁵⁰ accuracy is not necessary, whereas a short running time is a primary concern. $_{51}$ This happens to be often the case when f is the *Lagrangian function* of a hard 52 optimization problem, say a *block-structured* Integer Program (IP)

$$
\max\left\{\sum_{k\in\mathcal{K}}c^ku^k\;:\;\sum_{k\in\mathcal{K}}A^ku^k=b\;\;,\;\;u^k\in U^k\quad k\in\mathcal{K}\,\right\}\;, \tag{3}
$$

⁵³ where one relaxes, in a Lagrangian fashion, the complicating constraints that ⁵⁴ link together blocks of variables that would otherwise be independent, yielding

$$
f(\lambda) = \lambda b + \sum_{k \in \mathcal{K}} \left(f^k(\lambda) = \max \left\{ (c^k - \lambda A^k) u^k : u^k \in U^k \right\} \right) . \tag{4}
$$

55 Often the sets U^k are "hard", say encompassing integrality restrictions, so that $_{56}$ [\(3\)](#page-2-1) is a "hard" problem. Thus, [\(4\)](#page-2-2) is less hard than [\(3\)](#page-2-1) if only because it de-⁵⁷ composes into smaller independent subproblems. In some cases [\(4\)](#page-2-2) is simpler so even if $|\mathcal{K}| = 1$ since U^1 has a specific structure that can be algorithmically ⁵⁹ exploited; sometimes, as in §[3.1,](#page-12-0) both effects apply. Therefore, to simplify the

60 notation we will write $cu, Au = b$ and U respectively for the objective function, $\frac{61}{100}$ linking constraints and feasible region in $\frac{3}{4}$ when the sum-function struc- ture is better ignored. We also remark that there is a slight (and intended) 63 inconsistency between [\(4\)](#page-2-2) and [\(1\)](#page-2-0), in that the former actually has $|\mathcal{K}| + 1$ $\frac{64}{100}$ functions counting the linear one λb ; we will ignore this detail (say, assume $65 \quad b = 0$) up until it becomes relevant.

 ϵ ⁶⁶ The *Lagrangian relaxation* [\(4\)](#page-2-2) of the IP [\(3\)](#page-2-1), although not the only appli- cation of SM, has been one of the main factors motivating the interest in this class of algorithms. After the seminal [\[36\]](#page-30-1), the use of Lagrangian Duals (LD) [\[32\]](#page-30-2) has been a staple of integer optimization for over two decades, during which "Lagrangian relaxation" has invariably been a synonym of "solving a LD by a SM." In fact, some of the improvements on the SM originate from the IP community, such as the *deflection techniques* introduced in [\[14\]](#page-29-0) to face the ⁷³ "zig-zagging" behaviour whereby $g_{i+1} \approx -g_i$, so that two "reasonably long" steps combined make an "unfeasibly short" one. This leads to replace [\(2\)](#page-2-3) with

$$
\tilde{\lambda}_{i+1} = \lambda_i - \nu_i d_i \tag{5}
$$

 τ ₇₅ where the *direction* d_i is obtained by some linear combination of the *current* τ_6 subgradient q_i and the previous direction d_{i-1} . In the constrained case, the π fact that d_i is chosen without regard of the feasible set Λ also independently causes the zig-zagging phenomenon, unless conditional subgradient techniques [\[45\]](#page-30-3) are employed whereby d_i is first projected on the tangent cone of Λ at λ_i (it is somewhat surprising that the combination of deflection and projection has not been analyzed until [\[21\]](#page-29-1)). Again, IP has been the main motivation for s their development: inequality constraints $Au \leq b$ in [\(3\)](#page-2-1) give $\Lambda = \mathbb{R}^n_+$. Also, stepsize rules have been developed specifically for integer optimization [\[6,](#page-29-2)[31\]](#page-30-4). ⁸⁴ The appeal of SM has started to decrease during the early 90s, for dif- ferent reasons. On one hand, the success of polyhedral techniques has meant that Branch&Cut (B&C) approaches based on standard Linear Programming ⁸⁷ (LP) techniques have rapidly became the method of choice for the solution of IPs. On the other hand, Cutting-Plane (CP) methods for solving [\(1\)](#page-2-0) had been known for almost as long as SM [\[40\]](#page-30-5), and variants have been developed over the years that have been proven to be superior to SM in many circumstances. In particular, both Bundle methods [\[37,](#page-30-6)[47,](#page-30-7)[64\]](#page-31-1) and center-based methods [\[22\]](#page-29-3) $_{92}$ (the latter often [\[33\]](#page-30-8), but not always [\[57\]](#page-31-2), based on interior-point techniques) stabilize the original CP, most of the time resulting in the best performances [\[10,](#page-29-4)[13,](#page-29-5)[19,](#page-29-6)[30\]](#page-29-7). Yet, the computational advantage of these methods upon SM is mostly seen "at the tail" of the process, where SM convergence remains slow whereas other methods can (if properly set) rapidly accrue "the right set of information to stop" [\[29,](#page-29-8)[30\]](#page-29-7). In earlier stages the behaviour is more similar, despite the fact that the other methods hoard much more information than SM do [\[13\]](#page-29-5). This implies a higher cost per iteration due to the solution of the Master Problem (MP), that can account for a large part of the total compu- tational time $[27,29]$ $[27,29]$, thereby possibly negating the advantage due to faster convergence. Although the cost of the MP can be decreased, e.g. by developing

 specialized methods [\[24\]](#page-29-10) or by reformulating it so that it can be more effec- tively solved by standard ones [\[8\]](#page-29-11), the SM is inherently less expensive. The MP cost is particularly hurtful when solving the subproblems in parallel, since then the MP is the sequential bottleneck that limits the parallel speedup [\[15\]](#page-29-12). Furthermore, research on SM continued to bring improvements. One was $\frac{1}{108}$ the re-discovery [\[5,](#page-28-0)[6,](#page-29-2)[46\]](#page-30-9) of what should have been a well-known property [\[2\]](#page-28-1), i.e., that SM can be endowed with ways to produce (approximately) optimal solutions to the convexified relaxation [\[48\]](#page-30-10). This puts them on par with Bun- dle and center-based methods, that have always been well-known for being able to produce primal solutions [\[23,](#page-29-13)[26\]](#page-29-14) as a by-product of dual optimization. Also, incremental SM have been proposed [\[41,](#page-30-11)[50,](#page-30-12)[56\]](#page-30-13) which allow to exploit the block-separable structure of [\(4\)](#page-2-2) to potentially speed-up computations, something that—albeit with a very different set of trade-offs—Bundle meth-116 ods were already well-known to be able to do [\[4,](#page-28-2) [10,](#page-29-4) [22,](#page-29-3) [29,](#page-29-8) [39\]](#page-30-14). Finally, fast SM $_{117}$ have been proposed, starting with [\[52,](#page-30-15)[53\]](#page-30-16), which try to exploit structure in f to close the gap with fast gradient methods [\[51\]](#page-30-0), that have substantially better 119 convergence rates than SM but require differentiability of f . Applied to our setting these would require to solve the modified Lagrangian problem as

$$
\bar{f}_{\mu}(\lambda) = \lambda b + \max\{ (c - \lambda A)u - \mu d(u) : u \in U \}, \qquad (6)
$$

with an appropriately defined strongly convex prox-function $d(u)$ so that \bar{f}_{μ} is a smooth lower approximation of f, and the two minima can be related by a simple function of μ . Thus, one can apply a fast gradient to f_{μ} and, 124 appropriately managing μ , efficiently obtain an approximate solution to [\(1\)](#page-2-0). This approach has been quite successful in several applications that require $_{126}$ the solution of large-scale convex optimization problems [\[49\]](#page-30-17), such as machine learning, data mining, inverse problems, and imaging (e.g., [\[1,](#page-28-3)[17\]](#page-29-15)). In turn, this has stimulated a vibrant research stream that is producing new results $129 \quad [11,44,7]$ $129 \quad [11,44,7]$ $129 \quad [11,44,7]$ $129 \quad [11,44,7]$. While the modification [\(6\)](#page-4-0) is typically not viable in IP applications, primal-dual SM (PDSM) [\[54\]](#page-30-19) can be defined that try to achieve similar re- sults with an oracle for the original function. Indeed, the recent universal fast $_{132}$ gradient method [\[55\]](#page-30-20) automatically switches from the fast gradient, when f has the required properties, to PDSM when these are missing; for this reason, in this paper we take PDSM as the representatives of "modern" SM. Even the very recent [\[38\]](#page-30-21), which combines in a unified framework PDSM with the Mirror-Descent method [\[51\]](#page-30-0), provides only a slight generalization that does not significantly enlarge the class of approaches that can be implemented.

 The aim of this paper is to assess how the recent developments in SM have influenced their computational significance for the approximate solution of LD of IPs. Our interest is motivated by the fact that, when used to provide lower bounds on [\(3\)](#page-2-1), [\(1\)](#page-2-0) has to be solved with the same accuracy required to the $_{142}$ solution of [\(3\)](#page-2-1), which is usually around 1e-4 relative. This value is, broadly speaking, not so coarse that a SM is clearly the best choice to attain it (as would, say, be 1e-2), but as well not so fine as to be basically hopeless to attain with a SM (as would, say, be 1e-6). This middle ground needs there-fore to be explored computationally. Towards that aim we unify most of the known SM under a general scheme, starting from [\[21\]](#page-29-1) that first unified deflec- tion and projection and adding a number of other practically relevant issues such as several different forms of deflection and stepsize formulæ, incremental approaches, and dynamic generation of Lagrangian variables. The aim is not providing theoretical contributions: some of the variants that we have tested do not even have a rigorous convergence proof (cf. Table [4\)](#page-28-4). We have instead developed an object-oriented C++ code, which we plan to openly release, that implements the proposed general scheme in a flexible way so as to make it easy to add new variants. The code is tested on the solution of two different LD of the Fixed-Charge Multicommodity Capacitated Network Design (FC- MCND) problem [\[18\]](#page-29-18). While both relaxations exhibit the block-separable form ¹⁵⁸ [\(4\)](#page-2-2), they differ—for the same FC-MCND instance—in $|\mathcal{K}|$, n, and whether or ¹⁵⁹ not $\Lambda = \mathbb{R}^n$. These characteristics have an impact on the optimal choice of the algorithmic parameters for SM, helping in better characterizing the strengths and weaknesses of each variant. However, the two LD ultimately compute the same bound, which allows for an interesting comparison between them as well as with other solution methods that attain the same bound, such as different algorithms to solve the same LD and the use of general-purpose LP solvers.

 The paper is organized as follows. In Section [2](#page-5-0) we discuss the main char- acteristics of the SM presented in the literature, and we discuss a unified algorithmic scheme that encompasses them. Section [3](#page-12-1) is dedicated to our ex- tensive numerical experiments: we describe the target FC-MCND problem and its two different Lagrangian relaxations, then the experimental setup, and fi- nally the results of the best SM variants, briefly comparing them with other approaches. These results, and the learned lessons, are summarized in Section [4.](#page-21-0) The Appendix contains the details of the algorithmic parameters of the SM 173 we have used and of the tuning we have performed on them.

174 2 A general subgradient scheme

 In this section we discuss the basic building blocks of SM, and we describe a general scheme encompassing many of the variants proposed in the literature.

2.1 Building blocks of subgradient methods

 Each SM is constructed by combining a set of basic "building blocks". We now briefly discuss them, with the fine details provided in the Appendix.

2.1.1 Stepsize rules

181 A crucial aspect of any SM is the selection of the *stepsize* ν_i . One of the surprising properties of these algorithms is that the stepsize can be in fact chosen without any knowledge, either a-priori or a-posteriori, of the specific ¹⁸⁴ function to be minimized; indeed, any choice of the stepsize satisfying the ¹⁸⁵ so-called diminishing/square summable condition

$$
\sum_{i=1}^{\infty} \nu_i = \infty \quad , \quad \sum_{i=1}^{\infty} \nu_i^2 < \infty \quad ,
$$

186 of which $\nu_i = 1/i$ is the prototypical example, leads to a convergent algorithm. ¹⁸⁷ While this emphasizes the robustness of SM, these Stepsize Rules (SR) are ¹⁸⁸ most often inefficient in practice. The first efficient SR is due to Polyak [\[58\]](#page-31-3), and simply reads $\nu_i = \beta_i (f_i - f_*)/||g_i||^2$, with $\beta_i \in (0, 2)$ arbitrary. This, 190 however, needs to be revised, because in general $d_i \neq g_i$ (cf. §[2.1.2\)](#page-7-0), and f_* is ¹⁹¹ not known. This leads to the Polyak-type target value SR of the form

$$
\nu_i = \beta_i (f_i - f_i^{lev}) / ||d_i||^2
$$
 (7)

¹⁹² where f_i^{lev} is some approximation of f_* . Several SR of this type have been ¹⁹³ proposed; see, e.g., [\[5,](#page-28-0)[6,](#page-29-2)[12,](#page-29-19)[20,](#page-29-20)[43,](#page-30-22)[60\]](#page-31-4). Except in specific cases that will be ¹⁹⁴ discussed separately, all of our SR will have this form. The nontrivial issue in ¹⁹⁵ [\(7\)](#page-6-0) is, clearly, how f_i^{lev} is determined. Without any external information, the 196 typical approach is the *target following* one, where $f_i^{lev} = f_i^{rec} - \delta_i$ using the ¹⁹⁷ record value $f_i^{rec} = \min\{f_l : l = 1, \ldots, i\}$ and the displacement $\delta_i > 0$ (which 198 guarantees $\nu_i \geq 0$). The rules for choosing δ_i are divided into vanishing and 199 nonvanishing ones according to the fact that $\delta_i \searrow 0$ as $i \to \infty$, or not [\[21,](#page-29-1) [42,](#page-30-23) ²⁰⁰ [59\]](#page-31-5). However, our application has the specific benefit that often a lower bound 201 on f_* is available. This is typically provided by the cost $c\bar{u}$ of some feasible 202 solution of [\(3\)](#page-2-1). In theory \bar{u} may not always be available, for instance because ²⁰³ [\(3\)](#page-2-1) is actually empty. However, in many cases feasible lower bounds can easily ²⁰⁴ be computed early on. For the application of §[3.1,](#page-12-0) for instance, it is easy to ²⁰⁵ detect if a solution exists at all by simply solving a continuous relaxation; if not ²⁰⁶ there is no point in solving [\(1\)](#page-2-0), otherwise rounding provides a feasible solution \bar{u} which can be used as a feasible lower bound to all nodes of a B&C approach. 208 Indeed, at each node the algorithm is stopped as soon as $f_i^{rec} \leq c\bar{u}(1 + \eta)$, 209 where η is the required *relative* accuracy for the solution of [\(3\)](#page-2-1). Hence, in our 210 tests we will assume that a lower bound $f \leq f_*$ is available, which provides a ²¹¹ workable f_i^{lev} without a need for target following techniques to be used. This ²¹² allowed us to reduce the set of SR to be tested to only the following three:

²¹³ 1. the Polyak rule [\[58\]](#page-31-3), whereby β_i and f_i^{lev} do not depend on *i*;

 $_{214}$ 2. the ColorTV rule as implemented in the Volume algorithm [\[5\]](#page-28-0), which is ²¹⁵ based on classifying the iterations as *green*, yellow and red according to the improvement $\Delta f_i = f_{i-1} - f_i$ and the scalar product $d_{i-1}g_i$ (cf. §A.2); ²¹⁷ 3. the FumeroTV rule introduced in [\[31\]](#page-30-4), specifically designed for LDs of IPs and that changes both β_i and f_i^{lev} in two different phases (cf. §A.2).

 It would, however, be straightforward to test other approaches in our C++ $_{220}$ framework, such as the standard target following ones [\[21,](#page-29-1) [42,](#page-30-23) [59\]](#page-31-5). In fact, other than the above three Polyak-type rules, we have also tested the entirely dif-ferent SR corresponding to PDSM, as discussed next.

 223 2.1.2 Deflection

²²⁴ We have always used the fairly (although not entirely) general version

$$
d_i = \alpha_i g_i + (1 - \alpha_i) d_{i-1} \tag{8}
$$

²²⁵ of the Deflection Rule (DR) [\(5\)](#page-3-0) to compute the next iterate, for the deflection 226 parameter $\alpha_i \in [0, 1]$. The use of a convex combination is crucial in the analy-227 sis, because it ensures that d_i is always an approximate (conditional, cf. §[2.1.3\)](#page-7-1) ²²⁸ subgradient of f, as recalled in $\S 2.2$. Furthermore, this allows to produce (hope-²²⁹ fully, asymptotically feasible) primal solutions $u \in conv(U)$ that are useful, 230 e.g., for the active-set strategy discussed in $\S 2.1.5$. Finally, since d_i is ulti- $_{231}$ mately to be scaled by the stepsize ν_i , the multipliers can always be scaled $_{232}$ (up or down) as to sum to one, with the scaling factor then accounted by ν_i . ²³³ For our experiments we have considered the following three DR:

- 234 1. the STSubgrad rule of the non-deflected SM [\[58\]](#page-31-3), i.e., $\alpha_i = 1$;
- 235 2. the Volume rule where α_i is chosen as the (safeguarded) optimal solution ²³⁶ of the one-dimensional quadratic problem [\[5,](#page-28-0)[6\]](#page-29-2) (cf. \S A.3);
- 3. the Primal-Dual rule of [\[54\]](#page-30-19) for PDSM, which actually choses α_i and ν_i 237 ²³⁸ simultaneously in order to obtain optimal worst-case estimates on the SM ²³⁹ convergence rate, in both the Simple Averages (SA) and the Weighted ²⁴⁰ Averages (WA) variants (cf. §A.3).

²⁴¹ Other rules have been proposed, such as the original one in [\[14\]](#page-29-0) which used ²⁴² the largest possible α_i yielding $d_{i-1}q_i \geq 0$ (i.e., $\alpha_i = 1$ if the property already

²⁴³ holds). Again, testing then in our C++ framework would be straightforward.

²⁴⁴ 2.1.3 Projection

²⁴⁵ In the constrained case, what is actually minimized is the essential objective 246 $f_A(\lambda) = f(\lambda) + i(\lambda)$, where $i(\cdot)$ is the (convex) indicator function of Λ (i.e., $_{247}$ $_1(\lambda) = 0$ if $\lambda \in \Lambda$, and $_1(\lambda) = \infty$ otherwise). It is well-known that the normal cone N_i to Λ at λ_i , which is the polar of T_i , is $\partial_l(\lambda_i)$. Projecting g_i on T_i 248 ²⁴⁹ is then choosing some $w_i \in \partial(\lambda_i)$ in order to use $g_i + w_i \in \partial f_A(\lambda_i)$, instead ²⁵⁰ of just g_i , to define d_i . While this is quite natural, at least if Λ is easy to ²⁵¹ project upon, things are more complex under [\(8\)](#page-7-2), as there are then 8 possible ²⁵² deflection schemes, corresponding to all possible combinations to projecting ²⁵³ g_{i-1}, d_{i-1} and d_i . The analysis of [\[21\]](#page-29-1) shows that theoretical convergence can ²⁵⁴ be attained in two ways. The first is the stepsize-restricted one, limited to 255 stepsize rules of the form [\(7\)](#page-6-0), which requires the satisfaction of the *safe rule*

$$
\beta_i \le \alpha_i \ (\le 1) \ \ , \tag{9}
$$

ensuring that a step over a direction that is very far from $-q_i$ cannot be $_{257}$ too large. In the *deflection-restricted* one, ν_i can rather be choosen arbitrarily $_{258}$ provided that α_i is kept "large enough" by

$$
(\nu_i||d_{i-1}||^2)(f_i - f_i^{lev} + \nu_i||d_{i-1}||^2) \le \alpha_i .
$$
 (10)

²⁵⁹ If projection on Λ is too expensive, it could be substituted with partial projec- tions working onto the individual constraints sets [\[16\]](#page-29-21). This would not change much the algorithmic scheme presented in this paper; besides, "complex" Λ are comparatively rare in our preferred application.

2.1.4 Incremental approaches

²⁶⁴ When $|\mathcal{K}|$ is very large, the total cost for computing $f(\lambda_i)$ may be large even $_{265}$ if each f^k is, taken individually, quite inexpensive. Motivated by training ap- proaches for machine learning, incremental SM have been developed where ₂₆₇ the "full" subgradient g_i is replaced by g_i^k of one component $k \in \mathcal{K}$. Ideally, a sequence of *incremental* (inner) iterations performed along single-component subgradients could be roughly as effective as a sequence of full (outer) iter-₂₇₀ ations, while the function evaluation cost is reduced by a factor of $1/|\mathcal{K}|$ [\[9,](#page-29-22) [56\]](#page-30-13). However, to guarantee convergence one needs to regularly compute the whole function f, so not all the iterates can be incremental. Besides, due to ²⁷³ the risk that a step along one "rogue" component may move λ_i away from the optimum, the stepsize of incremental iterations need to be reduced with respect to that of full ones (cf. [\(14\)](#page-12-2) below).

2.1.5 Active set

277 When the number n of variables (i.e., of $Au = b$ constraints in [\(3\)](#page-2-1)) is large, $_{278}$ it may be convenient to employ an *Active Set* (AS) strategy whereby only a $_{279}$ (small) subset of them is given a nonzero value at each iteration [\[26,](#page-29-14)[29,](#page-29-8)[30\]](#page-29-7). 280 This is in particular sensible if the constraints have the form $Au \leq b$ (\implies ²⁸¹ $\Lambda = \mathbb{R}^n_+$, because one can expect that only a fraction of them will actually be binding at optimality. Indeed, the AS allows to deal even with exponentially many constraints, provided that an efficient separator is available, which is known as "Relax-and-Cut" [\[35\]](#page-30-24). The relevant technical issue is what solution ²⁸⁵ $u \in U$ is used to perform separation, i.e., to identify violated constraints to be ²⁸⁶ added to the AS. An obvious choice is the optimal solution u_i of [\(4\)](#page-2-2) for the ²⁸⁷ current iterate λ_i , but a more sound choice is the *convexified solution* \bar{u}_i that can be generated at each iteration [\[2,](#page-28-1)[5,](#page-28-0)[6,](#page-29-2)[34,](#page-30-25)[46\]](#page-30-9) and that, under appropriate conditions, converges to the optimal solution of [\(3\)](#page-2-1) (if it is a convex problem, of its convexified relaxation otherwise). Under [\(8\)](#page-7-2), this is simply obtained as ²⁹¹ $\bar{u}_i = \alpha_i u_i + (1 - \alpha_i) \bar{u}_{i-1}$. The AS technique poses little convergence issues if the AS is monotonically increasing (eventually, all variables will be active); careful removal of variables from the AS is also possible.

2.1.6 Summary

All these aspects give rise to a rather large set of possible combinations, many

of which have algorithmic parameters that have to be tuned for optimal per-

 formances. Not all of these combinations have reliable proofs of convergence, although several do (cf. Table [4\)](#page-28-4). In practice, barring dramatic mis-settings of the algorithmic parameters, all the ones we have tested showed at least some degree of convergence, confirming the well-known fact that SM are remarkably robust approaches. Despite being very many (cf. the Appendix), the combi- nations that we have tested do not cover all possible variants of SM. Among the techniques that have been left out of the experiments are space-dilation $_{304}$ methods [\[41,](#page-30-11) §7.2], other SR like variants of the Polyak stepsize [41, (7.11)] 305 or Ermoliev-like stepsizes $[41, (7.6)–(7.9)]$, the *heavy ball* SM $[62]$ popular in machine learning, and others. Yet, the structure of our C++ code would allow to easily incorporate most of these variants.

³⁰⁸ 2.2 A generic subgradient scheme

311

³⁰⁹ We now present a generic scheme of SM, in order to be able to discuss the ³¹⁰ nontrivial interactions between its individual components.

0. Input the algorithmic parameters, among which StepRes; Select $\bar{\lambda}_0 \in \Lambda$; $\lambda_1 \leftarrow \bar{\lambda}_0$, $\bar{f}_0 = -\infty$, $d_0 \leftarrow 0$, $i \leftarrow 0$ and go to step 4; 1. Possibly, $d_{i-1} \leftarrow P_{T_i}(d_{i-1});$ if(StepRes) then $\alpha_i = \text{Definition}()$; ComputeD(); $\nu_i = \text{Stepsize}(\alpha_i)$ else $\nu_i =$ Stepsize(); $\alpha_i =$ Deflection(ν_i); ComputeD(); 2. If some stopping test is satisfied, exit; 3. $\lambda_{i+1} \leftarrow P_A(\bar{\lambda}_i - \nu_i d_i);$ 4. OutItr = true if an outer (full) iteration is to be performed; if(OutItr) then evaluate $f_{i+1} = f(\lambda_{i+1})$ and $g_{i+1} \in \partial f(\lambda_{i+1});$ else select k, evaluate $f^k(\lambda_{i+1})$ and $g_{i+1} \in \partial f^k(\lambda_{i+1});$ 5. Possibly, $g_{i+1} \leftarrow P_{T_i}(g_{i+1})$. Select $\bar{\lambda}_{i+1}$, set \bar{f}_{i+1} accordingly; 6 $i \leftarrow i + 1$ and go to step 1.

³¹³ – The new iterate is generated at Step 3 starting from the *stability center* $\bar{\lambda}_i$, which is updated at Step 5. In the original SM the update is always $\lambda_{i+1} = \lambda_{i+1}$. In the parlance of Bundle methods, this is called a Serious 316 Step (SS), as opposed to *Null Steps* (NS) where $\bar{\lambda}_{i+1} = \bar{\lambda}_i$. Changing $\bar{\lambda}_i$ is ³¹⁷ sensible if this leads to a significant improvement of the function value, i.e., 318 $\Delta f_i = \bar{f}_i - f_{i+1} \gg 0$, otherwise a NS may be preferable. This is the strategy ³¹⁹ often used (cf. §A.3), although PDSM provide an entirely different rationale ³²⁰ for using a stability center, without ever changing it. In our implementation ³²¹ either a SS or NS is always performed, as all SM variants we are aware of ³²² only employ these (whereas Bundle methods exist that can make different ³²³ choices [\[3\]](#page-28-5)). All this requires some quite obvious changes in some of the standard formulæ, such as using \bar{f}_i instead of f_i in [\(7\)](#page-6-0) and [\(10\)](#page-7-3).

325 – The ComputeD() subroutine extends [\(8\)](#page-7-2) to $d_i = \alpha_i \bar{g}_i + (1 - \alpha_i)\bar{d}_{i-1}$, where \bar{g}_i and \bar{d}_{i-1} are either g_i and d_{i-1} or their projection over the tangent cone 327 T_i of A at the stability center $\bar{\lambda}_i$. Furthermore, possibly $d_i \leftarrow P_{T_i}(d_i)$,

³¹² The following general remarks discuss the common features of all the variants.

 $_{328}$ yielding all 8 possible deflection schemes. Yet, since T_i is convex, if both g_i and d_{i-1} are projected then $d_i \in T_i$ already, thus projecting is avoided. 330 - The (fixed) algorithmic parameter StepRes controls whether ν_i is com- 331 puted after d_i (stepsize-restricted) or vice-versa (deflection-restricted). Since $_{332}$ computing d_i requires α_i , ComputeD() always comes after Deflection(). ³³³ However, in the deflection-restricted approach, the safe rule [\(9\)](#page-7-4) requires 334 ν_i in order to choose α_i , and consequently Stepsize() has also to be 335 called before ComputeD(). Note that, in this case, [\(7\)](#page-6-0) would require $||d_i||$ 336 before having computed d_i , which is then replaced by $||d_{i-1}||$. The stepsize-restricted case is more natural for [\(7\)](#page-6-0) in that d_i is computed before ν_i is. \sum_{338} In PDSM, ν_i and α_i are chosen simultaneously, and therefore StepRes has ³³⁹ no effect. Since we do not restrict ourselves to theoretically convergent $_{340}$ methods, we also allow to switch off the safe rules $(9)/(10)$ $(9)/(10)$.

 341 – To update the AS (if any), the primal solution \bar{u}_i (cf. §[2.1.5\)](#page-8-0) is needed, which depends on the choice of α_i . Hence, the AS can only be updated af-³⁴³ ter that Deflection() has been called. However, if the AS changes, then the vectors d_{i-1} and g_i need to be updated to take into account the new components, which in turn may change α_i . Hence, after an AS update, we compute again the deflection parameter α_i , and in the deflection-restricted ³⁴⁷ scheme also the stepsize; the process is repeated until the AS remains $\frac{348}{48}$ unchanged. Also, projection on T_i should be re-done each time new variables are added. However, with $\Lambda = \mathbb{R}^n_+$ the projection can be computed 350 component-wise, hence only the new components of d_{i-1} , g_i and/or d_i need ³⁵¹ be dealt with.

 \bar{a}_{352} – The linearization error of g_i at $\bar{\lambda}_i$ is

$$
\sigma_i = \sigma_i(\bar{\lambda}_i) = \bar{f}_i - [f_i + (\bar{\lambda}_i - \lambda_i)g_i] = \sigma_i(\bar{\lambda}_{i-1}) - \Delta \bar{f}_i - (\bar{\lambda}_i - \bar{\lambda}_{i-1})g_i \quad , \tag{11}
$$

where $\Delta \bar{f}_i = \bar{f}_{i-1} - \bar{f}_i$. Note that $\Delta \bar{f}_i \neq \Delta f_i$ when a NS occurred at iteration $i-1$, i.e., $\bar{\lambda}_i = \bar{\lambda}_{i-1} \implies \Delta \bar{f}_i = 0$. Convexity of f ensures that ³⁵⁵ $\sigma_i \geq 0$ and $g_i \in \partial_{\sigma_i} f(\lambda_i)$. Furthermore, σ_i can be easily kept updated when λ_i changes using [\(11\)](#page-10-0), which is useful since it may play a role at different ³⁵⁷ points in the algorithm, such as some of the DR (cf. §A.3) and the stopping ³⁵⁸ tests (cf. next point). However, when projection is used, one rather wants to compute the linearization error of the projected $\bar{q}_i \in \partial [f + 1](\bar{\lambda}_i)$. This $\frac{1}{360}$ is why the projection of g_i is not performed at Step 1, but it occurs before $_{361}$ updating $\overline{\lambda}_i$ at Step 5: so that, in case of a SS, the linearization error of \overline{g}_i is computed. A downside of this choice is that if $\overline{\lambda}_i$ changes at Step 363 5, then q_i may have to be projected again in the next iteration; however, ³⁶⁴ projections (if at all required) are inexpensive in our applications.

 $\frac{365}{100}$ – An advantage of [\(8\)](#page-7-2), which underlines all the analysis in [\[21\]](#page-29-1), is that we can similarly compute and keep updated the linearization error of d_i w.r.t. $\bar{\lambda}_i$. That is, knowing that $d_{i-1} \in \partial_{\epsilon_{i-1}} f(\bar{\lambda}_i)$, one has $d_i \in \partial_{\epsilon_i} f(\bar{\lambda}_i)$ with $\epsilon_i =$ ³⁶⁸ $\epsilon_i(\bar{\lambda}_i) = \alpha_i \sigma_i(\bar{\lambda}_i) + (1 - \alpha_i)\epsilon_{i-1}(\bar{\lambda}_i)$. Also, ϵ_i can be cheaply updated after as SS with $\epsilon_i(\bar{\lambda}_{i+1}) = \epsilon_i(\bar{\lambda}_i) - \Delta \bar{f}_{i+1} - (\bar{\lambda}_{i+1} - \bar{\lambda}_i)d_i$. This means, however, ³⁷⁰ that the same issue about projection arises here also.

 371 – In the un-deflected SM, it is possible to use the inverse of $||g_i||$ in [\(7\)](#page-6-0) because as soon as $||g_i|| = 0$, one has proven the optimality of λ_i . Since 373 $g_i \in \partial_{\sigma_i} f(\bar{\lambda}_i)$, this also means that $\bar{\lambda}_i$ is σ_i -optimal. With the provisions 374 above, the same holds for d_i (or it projection); that is one can stop when δ ₃₇₅ both $||d_i||$ and ϵ_i are "small". Our particular implementation is

$$
t^* \|d_i\| + \epsilon_i \le \eta \max(1, |f_i^{rec}|) \tag{12}
$$

where t^* is an appropriately chosen "large" scaling factor [\[25\]](#page-29-23) and η is the 377 required final relative accuracy (typically, $\eta = 1e-4$).

³⁷⁸ – As suggested in [\[54\]](#page-30-19) (and in [\[3\]](#page-28-5) in a different context), one could also use ω_{379} the deflection parameter α_i in a different way: not to change the gradient, ³⁸⁰ but the point where it is evaluated. That is, for the recursive formulæ

$$
\hat{\lambda}_i = \alpha_i \lambda_i + (1 - \alpha_i) \hat{\lambda}_{i-1} \quad , \quad \hat{f}_i = \alpha_i f_i + (1 - \alpha_i) \hat{f}_{i-1}
$$

³⁸¹ with $(\hat{\lambda}_0, \hat{f}_0) = (0, 0)$, one has $\hat{f}_i \ge f(\hat{\lambda}_i)$ for all i, and therefore an approximation of the linearization error of d_i with respect to $\hat{\lambda}_i$ is

$$
\hat{\epsilon}_i = \hat{\epsilon}_i(\hat{\lambda}_i) = \alpha_i \hat{\sigma}_i(\hat{\lambda}_i) + (1 - \alpha_i)\hat{\epsilon}_{i-1}(\hat{\lambda}_i)
$$

383 (with $\hat{\epsilon}_1(\hat{\lambda}_1) = \hat{\sigma}_1(\hat{\lambda}_1)$ and $\hat{\sigma}_i(\hat{\lambda}_i) = \hat{f}_i - [\,f_i + (\hat{\lambda}_i - \lambda_i)g_i\,] = (1 - \alpha_i)[\,\hat{f}_{i-1} -$ ³⁸⁴ $f_i - (\hat{\lambda}_{i-1} - \lambda_i)g_i$]). Hence $d_i \in \partial_{\hat{\epsilon}_i} f(\hat{\lambda}_i)$ for all i, which allows to also ³⁸⁵ employ the alternative stopping criterion

$$
t^* \|d_i\| + \hat{\epsilon}_i \le \eta \max(1, |f_i^{rec}|) \quad . \tag{13}
$$

 Testing [\(13\)](#page-11-0) is free in PDSM, since all the terms involved have to be com- 387 puted anyway (cf. §A.3). For all the other approaches we only used [\(12\)](#page-11-1), for again in most cases $||d_i||$ and ϵ_i are required anyway in the SR and/or the DR. However, both stopping conditions are hardly if ever satisfied in practice, and typically the algorithm stops at the pre-set iterations limit. – At Step 4, some logic is used to decide whether an outer (full) iteration is computed, thereby evaluating all the components, or only one compo- nent is evaluated. This is done in a simple pattern: we perform one outer $\frac{394}{}$ iteration, followed by $|\mathcal{K}| + 1$ inner iterations, one for each of the different components plus one for the linear component corresponding to the RHS. As suggested in [\[9,](#page-29-22)[56\]](#page-30-13), we randomize the order in which the components are chosen, with the random permutation changed at every outer iteration. We experimented with different ratios between inner and outer iterations ³⁹⁹ but the results were inconclusive, with the simple approach being in general 400 the best one. Furthermore, this means that a group of $|\mathcal{K}| + 2$ consecutive iterations (one outer, the other inner) costs, at least as far as the subprob- lem solution is concerned, as much as two full iterations. This is useful when comparing the running time of the approaches, as discussed in §[3.2.](#page-13-0) When the AS strategy is used we update the AS only at full iterations, ⁴⁰⁵ since its cost is comparable to that of one full iteration (cf. again $\S 3.2$), and doing it more frequently would largely negate the advantage of having faster iterations. Updating the active set less frequently is possible, but it has not shown to be computationally convenient in our application.

 $_{409}$ – In the incremental SG, deflection is never used $(\alpha_i = 1)$; there is no theo-⁴¹⁰ retical support for deflecting the inner steps, and also how to deflect outer ⁴¹¹ ones is unclear. For inner steps, [\(7\)](#page-6-0) would require to compute the norm ⁴¹² of $g_i \in \partial f(\lambda_i)$, but only g_i^k for one $k \in \mathcal{K}$ is available. Following [\[50\]](#page-30-12) we ⁴¹³ replace $||g_i||$ by the global Lipschitz constant L of f, yielding

$$
\nu_i = \beta_i \frac{\bar{f}_{p(i)} - f_i^{lev}}{\chi|\mathcal{K}|L^2}
$$
\n(14)

⁴¹⁴ where $p(i)$ the last outer step before i and χ is an arbitrary constant. In ⁴¹⁵ other words, one keeps the main part of the stepsize unchanged during ⁴¹⁶ sequences of inner iterations between two outer ones. In the same vein in ⁴¹⁷ our experiments we used $\beta_i = \beta_{p(i)}$ and $f_i^{lev} = f_{p(i)}^{lev}$.

⁴¹⁸ 3 Numerical experiments

⁴¹⁹ We now present our extensive computational experiments on two different La-⁴²⁰ grangian relaxations ot the Fixed-Charge Multicommodity Capacitated Net-

⁴²¹ work Design (FC-MCND) problem [\[18\]](#page-29-18), rapidly recalled below.

⁴²² 3.1 Lagrangian relaxations for FC-MCND

Given a directed network $G = (N, A)$, we must satisfy the demands of a set of commodities K. Each $k \in K$ is an origin-destination pair (s_k, t_k) with an associated demand $d^k > 0$ that must flow between them, i.e., a deficit vector $b^k = [b_i^k]_{i \in N}$ such that $b_i^k = -d^k$ if $i = s_k$, $b_i^k = d^k$ if $i = t_k$, and $b_i^k = 0$ otherwise. Each arc $(i, j) \in A$ can only be used, up to its mutual capacity $u_{ij} > 0$, if the corresponding fixed cost $f_{ij} > 0$ is paid. Also, individual capacities u_{ij}^k are imposed for each commodity k. Finally, the routing cost c_{ij}^k has to be paid for each unit of commodity k on (i, j) . FC-MCND consists in minimizing the sum of all costs while satisfying demand requirements and capacity constraints, its classical arc-flow formulation being

$$
\min \sum_{k \in K} \sum_{(i,j) \in A} c_{ij}^k x_{ij}^k + \sum_{(i,j) \in A} f_{ij} y_{ij}
$$
\n(15)

$$
\sum_{(j,i)\in A} x_{ji}^k - \sum_{(i,j)\in A} x_{ij}^k = b_i^k \qquad i \in N, \ k \in K \qquad (16)
$$

$$
\sum_{k \in K} x_{ij}^k \le u_{ij} y_{ij} \tag{17}
$$

$$
x_{ij}^k \le u_{ij}^k y_{ij} \qquad (i,j) \in A \, , \, k \in K \qquad (18)
$$

$$
x_{ij}^k \ge 0 \qquad (i,j) \in A \, , \, k \in K \qquad (19)
$$

$$
y_{ij} \in \{0, 1\} \tag{20}
$$

⁴²³ For our tests we have employed two Lagrangian relaxations of FC-MCND. ⁴²⁴ In the first one relaxes constraints [\(17\)](#page-12-3)–[\(18\)](#page-12-4) with multipliers $\lambda = [\alpha, \beta] =$ ⁴²⁵ [α_{ij} , β_{ij}^k]_{$(i,j) \in A$, $k \in K \geq 0$, yielding the objective function}

$$
\min \sum_{(i,j)\in A} \sum_{k\in K} \left(c_{ij}^k + \alpha_{ij} + \beta_{ij}^k \right) x_{ij}^k + \sum_{(i,j)\in A} \left(f_{ij} - \alpha_{ij} u_{ij} - \sum_{k\in K} u_{ij}^k \beta_{ij}^k \right) y_{ij}
$$

426 whose minimization subject to the remaining [\(16\)](#page-12-5), [\(19\)](#page-12-6)–[\(20\)](#page-12-7) reduces to |K| shortest path problems, plus |A| trivial single-variable IPs. This justifies the name "Flow Relaxation" (FR), although what is relaxed are rather knapsacktype constraints. Since (16) , (19) only involve continuous variables, the LD pro- vides the same bound as the continuous relaxation. Note that the constraints [\(18\)](#page-12-4) are many; these being inequalities, this is the setting where AS techniques can be expected to be effective [\[29\]](#page-29-8). An estimate of the Lipschitz constant, useful for the incremental SM (cf. [\(14\)](#page-12-2)) as well as for PDSM (cf. [\(25\)](#page-25-0)), is ⁴³⁴ $L = \sqrt{\sum_{(ij)\in A} (u_{ij})^2 + \sum_{k\in K} \sum_{(ij)\in A} (u_{ij}^k)^2}$. Note that when the AS is used the capacities entering the above formula are only those of the constraints in the AS, and therefore L changes as the algorithm proceeds.

⁴³⁷ In the second relaxation one rather dualizes the flow conservation con-⁴³⁸ straints [\(16\)](#page-12-5) with multipliers $\lambda = [\lambda_i^k]_{i \in N, k \in K}$, yielding the objective function

$$
\min \sum_{(i,j)\in A} \left(\sum_{k\in K} (c_{ij}^k + \lambda_i^k - \lambda_j^k) x_{ij}^k + f_{ij} y_{ij} \right) \left[+ \sum_{i\in N} \sum_{k\in K} \lambda_i^k b_i^k \right]
$$

439 whose minimization subject to the remaining $(17)-(20)$ $(17)-(20)$ basically decomposes ϕ into $|A|$ continuous knapsack problems, one to determine the optimal value of 441 each integer variable y_{ij} . This justifies the name Knapsack Relaxation (KR), although what is relaxed are flow conservation constraints. It can be shown that, due to [\(18\)](#page-12-4), the relaxation has the integrality property: hence, as in the previous case the LD gives the same bound as the continuous relaxation. The number of multipliers is still rather large; however, these being equalities, it is unlikely that many of them are not going to be active at optimality, and therefore the AS technique is less likely to be effective. Unlike in the FR, there are no sign constraints on the multipliers, and therefore no projection ⁴⁴⁹ is needed. The Lipschitz constant is $L = \sqrt{\sum_{k \in K} \sum_{i \in N} (L_i^k)^2}$, where $L_i^k =$ $\max[\, \vert -b_i^k + \sum_{(ji) \in A} u_{ji}^k \vert \, , \, \vert -b_i^k - \sum_{(ij) \in A} u_{ij}^k \vert \,].$

451 Note that, being $(15)-(20)$ $(15)-(20)$ a minimization problem (unlike (3)), both LD ⁴⁵² are maximization problems (unlike [\(1\)](#page-2-0)). This is easily catered in the implemen-⁴⁵³ tation by changing the sign of the objective function and of the subgradients.

⁴⁵⁴ 3.2 Experimental setup

⁴⁵⁵ We have implemented all the variants of SM within a general C++ framework for

- ⁴⁵⁶ nonsmooth optimization developed by the authors along the years. The frame-
- ⁴⁵⁷ work is based on two pure virtual classes, NDOSolver and FiOracle, which es-
- ⁴⁵⁸ tablish the interface between the optimization algorithm (in our case, the SM
- ⁴⁵⁹ implemented in the class NDOSolver::Subgradient) and the oracle computing
- $_{460}$ f (in our case, the classes FiOracle::FlowFiOrcl and FiOracle:KnapFiOrcl
- ⁴⁶¹ for FR and KR, respectively). Other implementations of nonsmooth approaches,

 such as different forms of Bundle methods [\[3,](#page-28-5)[25,](#page-29-23)[29\]](#page-29-8), were already available within the framework. The Subgradient class in turn relies on two exter-464 nal classes, Stepsize and Deflection, so that the different SR (cf. $\S2.1.1$) and DR (cf. §[2.1.2\)](#page-7-0) can be implemented as derived classes from these. The 466 PDSM case, where ν_i and α_i are set togethery, is easily accounted for by 467 having the corresponding Primal-Dual class to derive from both Stepsize and Deflection. This shows that while the general scheme depicts the two aspects as independent, there is no problem when they actually have to be synchronized. Moreover, the code is designed for dealing with more complex Λ requiring projection on knapsack-like constraints by means of the CQKnPClass class [\[28\]](#page-29-24). The code has been compiled with GNU g ++ 4.4.5 (with -03 op- timization option) and ran single-threaded on an Opteron 6174 processor (12 cores, 2.2 GHz) with with 32 GB of RAM, under a i686 GNU/Linux operating system. To solve the FR, we have used solvers from the MCFClass project, available at http://www.di.unipi.it/optimize/Software/MCF.html, while solving the KR basically just required a sort and was coded directly. When comparing SM with other approaches we used Cplex 12.5.0.1 to solve LPs. ⁴⁷⁹ The numerical experiments have been performed on 80 randomly generated instances, arranged in 20 groups of 4 instances each. The first 8 groups are of small size. In the remaining 12 groups the number of nodes and arcs are chosen 482 as $(20, 300)$, $(30, 600)$, or $(50, 1200)$, and for each of these $|K|$ is chosen in $\{100,$ $483 \quad 200, 400, 800$ (cf. Table [1\)](#page-20-0). We refer to [\[29\]](#page-29-8) for more details; the instances can be downloaded from http://www.di.unipi.it/optimize/Data/MMCF.html. A nontrivial issue about our experiments is how to compare the perfor- mances of the different SM. Our choice has been to record the running time and the obtained lower bound of each variant with different iteration count limits. For all non-incremental SM, we (somewhat arbitrarily) choose that to be 100, 200, 500, 1000, 2000, 5000, and 10000 iterations. For incremen- tal SM, whose inner iterations are faster, the iteration counts of 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000 and 1000000 were used instead. We then charted the time required to reach a certain gap with the (known) optimal value. An issue with this approach is that computing the f value in instances of larger size is more costly, making it difficult to com- pute aggregated results. Fortunately, for our instances a simple scaling was sufficient. Indeed, we observed that the charts for the same SM variant and different sizes were remarkably similar, and they became almost identical by expressing them in normalized running time, i.e., dividing the running time by $|A| \cdot |K|$. This is reasonable because in both relaxations the computation of f is $O(|A|\cdot|K|)$ up to logarithmic factors $(|K|)$ shortest paths with non-negative $_{501}$ arc costs, hence $O(|A| \log(|N|))$ each, vs. |A| continuous knapsack problems, $\frac{502}{100}$ hence $O(|K| \log(|K|))$ each), and, given the limited range of |A| and |K|, any logarithmic factor is almost constant. All the rest of the algorithm has a linear $_{504}$ cost in the number of variables n, which is $(|A|+1)\cdot|K|$ for the FR and $|N|\cdot|K|$ for the KR, but |A| is proportional to |N| as the graphs are sparse. With the AS strategy n is actually (much) smaller, but identification of new violated σ constraints is again $O(|A| \cdot |K|)$. All in all, the iteration cost is dominated by

 $\frac{1}{508}$ factors of roughly $O(|A| \cdot |K|)$, explaining why the running time scales pretty much linearly in that quantity. It is also remarkable that the convergence speed $_{510}$ proved to be very similar as n varied by orders of magnitude (from 9040 to 960000 for the FR and from 800 to 40000 for the KR). This is not surpris- ing, since the theoretical efficiency estimates of SM are typically independent on n; our experiments confirm that the practical behaviour is in fact pretty $_{514}$ much invariant with n, hence that SM can be especially promising for very large-scale problems. This allowed us to compare the different SM variants by comparing their convergence graphs aggregated across all the 80 instances of our test set. Note that incremental variants actually are randomized al- gorithms due to the selection of the random reshuffle of the components at each full iteration; however, since each graph aggregates results among many instances, it is not necessary to repeat individual runs several times. All this has been instrumental in allowing us to perform the extensive tuning phase, detailed in §A.3, which led to the identification of the best results described in the next paragraph.

 A final relevant aspect of our computational tests concerns the fact that the stepsize rules $(7)/(10)$ $(7)/(10)$ require some (lower) approximation f to f_* . In order to avoid target-level approaches we have worked with a fixed \overline{f} . However, in order to cater for the different cases that would occur when using these techniques 528 in IP, we have used two different configurations: in one $f = f_*$, and in the 529 other $f = f_* -0.1|f_*|$. We denote the latter by "10% f_* "; it corresponds to the case where the best known solution to [\(3\)](#page-2-1) is 10% more costly than the best possible lower bound (somewhat on the "bad" side, but unfortunately not too unlikely), so that even if f_* were reached, the corresponding node in the B&C 533 tree could not be fathomed. The case $f = f_*$ is instead the one where the node can be fathomed by the bound, if the latter is computed accurately enough.

3.3 Results for the FR

 We now report the numerical results of SM on the FR, using the best param- eters detailed in the \S A.3. Each variant is represented in Figures [1](#page-16-0) and [2](#page-17-0) by $\frac{538}{338}$ means of a graph, with *normalized* total time (cf. §[3.2\)](#page-13-0) on the horizontal axis ₅₃₉ and *average gap* on the vertical one, both in logarithmic scale. We separately report results for all combinations of the three variants of SR and the two $_{541}$ variants of DR (STSubgrad "(s)" and Volume "(v)"). We also report all SR with the incremental approach "(i)" (with no deflection, cf. §[2.2\)](#page-9-0), and the two SA and WA variants of PDSM. For clarity, we divide both Figures in four different quadrants, with the same scale on both axes to allow for comparison. The upper two graphs (part (a)) depict results when the AS strategy is used, and the lower two ones (part (b)) when it is not. The leftmost graphs depict the approaches when deflection is used (Volume and Primal-Dual) and the rightmost ones these where it is not (STSubgrad and incremental). Figure [1](#page-16-0) 549 reports the results with $f = f_*$, while Figure [2](#page-17-0) those with $f = 10\% f_*$; since PDSM do not use f, the corresponding curves are the same in the two Fig ures. We did not report the performances of incremental approaches without the AS strategy because it was exceedingly slow. This is not surprising, be- cause in the FR just forming the whole subgradient has a cost comparable to that of solving all the subproblems, thereby negating any advantage in having incremental iterations.

Fig. 1 Results for the FR with lower bound f_* (normalized time vs. average gap)

⁵⁵⁶ The following remarks can be made about the results.

 – Deflected approaches are much more efficient than non-deflected ones, as can be seen by comparing the same SR (left vs. right graphs). This requires properly choosing how to deflect and which vectors among d_i , d_{i-1} and g_i 559 is better to project. However, as discussed in §A.4, the different forms of projection have a limited impact on the performances, as long as any projection is performed, so deflection is most definitely the way to go.

⁵⁶³ – Incremental approaches are not competitive, which is likely due to the com-⁵⁶⁴ bination of two factors. On the one hand, they are not deflected (cf. above). \mathcal{S}_{565} On the other hand *n* is large, so that just forming g_i^k requires much more ϵ_{566} time than computing f^k . Thus, each iteration has a large "fixed cost", ⁵⁶⁷ independent on how many components are computed, besides that of com- $_{568}$ puting f. While the AS strategy manages to decrease this cost, it is still not

(b) Results without the AS strategy

Fig. 2 Results for the FR with lower bound $10\% f_*$ (normalized time vs. average gap)

⁵⁶⁹ enough to make the incremental approach competitive. For this to happen $n \text{ should be "small" w.r.t. the cost of computing each } f^k \text{, although if the}$ ⁵⁷¹ latter is very large then other approaches may be preferable, cf. §[3.5.](#page-19-0)

 – PDSM are most often not competitive, although their convergence is very stable. The WA is typically better than the SA, as the theory suggests. PDSM can still be considered attractive in view of the very limited effort required to tune them; yet, finely tuned SM with other DR and SR can be significantly more effective. This may be partly due to the fact that PDSM σ_{577} do not use any available information about f^* , while $(7)/(10)$ $(7)/(10)$ do. We also experimented with providing PDSM other information about the optimal $_{579}$ solution to [\(1\)](#page-2-0) (cf. $\S A.3$), but with no success.

 – The AS technique is in general beneficial: SM are somewhat faster in per- forming the same number of iterations (the topmost graphs in both Figures terminate more on the left than the bottom ones), while the convergence rate is usually similar. There are, however, exceptions. For instance, in 684 "(v)" SM the AS can actually improve convergence speed (especially in Figure [2\)](#page-17-0), while the converse happens for PDSM. This is not surprising since, to the best of our knowledge, AS techniques in the PSDM have never been analyzed; this may suggest that some specific theoretical development

⁵⁸⁸ may be useful in practice.

⁵⁸⁹ 3.4 Results for the KR

⁵⁹⁰ The results of the KR are summarized in Figure [3,](#page-18-0) with largely the same ⁵⁹¹ notation as for the FR case. However, in this case the AS technique is not 592 used, so only one figure is needed: part (a) is for $f = f_*$, while part (b) is for 593 f = 10% f*. Since PDSM do not use f, the corresponding curves are identical.

Fig. 3 Results for the KR (normalized time vs. average gap)

⁵⁹⁴ The following remarks can be made about the results:

 $595 - 9$ y and large, the same trends seen in the FR case show up here in terms ⁵⁹⁶ of strong benefits of deflection and no benefits of incremental approaches. ⁵⁹⁷ – PDSM are even less competitive. This may be due to the fact that they ⁵⁹⁸ have been developed under some sort of compactness assumption on Λ $_{599}$ (cf. (21)), and actually use its (estimated) diameter in setting the algorith-⁶⁰⁰ mic parameters. In the KR, not only the feasible set is unbounded (this ω ₆₀₁ was true for the FR as well); since the relaxed constraints [\(16\)](#page-12-5) are rank-₆₀₂ deficient, the *set of optimal solutions* is also unbounded. This seems to

significantly affect the practical behaviour of PDSM.

- ϵ_{604} Figure [3\(](#page-18-0)a) for $f = f_*$ shows a peculiar behaviour of the FumeroTV rule: while it is the most efficient as it runs, it stops far before the maximal ϵ_{606} iteration limit because ν_i become too small, thereby getting a far worse final gap than the other variants (although quickly). This seems to be an issue with the rule, and no choice of the parameters we tested was able to avoid it. Interestingly, this only happens with deflection: it does not with 610 STSubgrad, nor with $f = 10\% f_*$. It may be possible that some settings ϵ_{611} that we have not tested may avoid this behaviour, but we elected to keep this as a cautionary tale about the fact that heuristic rules, while possibly working well in many cases, may fail sometimes.
- The convergence graph of ColorTV is noticeably shorter than the others (save for FumeroTV), as it often attains the required gap of 1e-4 against ϵ_{166} the known lower bound f_* , at which point it is stopped. This can actually 617 happen in the IP application, since $f_* < c\bar{u}$ may happen (the B&C node can be fathomed by the bound), which is particularly useful because the $\text{standard stopping rules}$ [\(12\)](#page-11-1)/[\(13\)](#page-11-0) are scarcely effective.
- ϵ_{620} In general, the KR provides better bounds more quickly than the FR, confirming previous experiences [\[19\]](#page-29-6).

3.5 Comparison with Cplex and Bundle methods

 We now compare the best SM with two other approaches which provide the very same bound: solving the LP relaxation of $(15)-(20)$ $(15)-(20)$ with a general- purpose LP solver, and solving the LD of the FR and the KR with a Bundle method. The experiments were performed as follows:

- For Cplex, an optimality gap of 1e-6 has been set, and always attained. Tuning also has been performed by testing all of the available LP algo- rithms and selecteing the dual simplex one, which provided the best per- formances; it was, however, almost always the algorithm chosen by the "automatic" setting. Also, the (many) constraints [\(18\)](#page-12-4) have been introduced in the formulation as *lazy constraints*—the equivalent of using the AS strategy in SM—which was crucial for performances (cf. [\[29,](#page-29-8) Table 4]). 634 We experimented with passing f_* to Cplex; since a dual simplex method is used, this might have allowed Cplex to stop as soon as a(n approxi- mately) dual solution is achieved. However, this turned out to be of no use, precisely due to lazy constraints: Cplex separates them only when a feasible primal solution is attained, which is only at the end of the dual $\frac{639}{100}$ simplex. Not using the lazy constraints allowed Cplex to stop sooner when the information was provided, but it resulted in a hugely increased running ϵ_{641} time. By contrast, the other algorithms use infeasible primal solutions to do separation, and therefore do not suffer from this issue.
- For the Bundle method [\[25\]](#page-29-23) a gap of 1e-4 was required, although, unlike with SM, requiring a higher accuracy may only come at the cost of a comparatively minor increase in running times [\[29,](#page-29-8) Table 3 and Table 6].

 ϵ_{646} The Bundle algorithm was also provided with f_* , which it uses both to $\frac{647}{164}$ stop as soon as a solution with accuracy 1e-4 is attained and to improve ₆₄₈ the *cutting plane model* it uses to drive the search. We used two different variants of the Bundle method for the two LD. For the FR we used the fully disaggregated version with "easy component" and linear stabilization, $\frac{651}{100}$ denoted by DE-L in the table, that has been proven in [\[29\]](#page-29-8)—after extensive tuning—to be the best option. It requires a costly master problem, which takes by far the largest fraction of running time, but it attains the desired solution in a very small number of iterations. For the KR, after extensive tuning (not discussed here in details) we found the best Bundle variant to rather be the one that uses a fully aggregated master problem with quadratic stabilization (denoted by AK-Q in the table), where the master problem is solved with the specialized QP solver of [\[24\]](#page-29-10).

 – For SM, we report results corresponding to the best options identified in the previous phase. In particular, for the FR we have used Volume as DR and Polyak as SR (denoted by FVP in the table), with the AS strategy, while for the KR we have used Volume as DR, but ColorTV as the SR ⁶⁶³ (denoted by KVC in the table). For both algorithms, we have set $f = f_*$, $\frac{664}{664}$ and required a gap of 1e-4. We also set an iteration limit of 5000, as it seemed to represent the best compromise between accuracy of the achieved solution and running time. FVP invariably stopped at the iteration limit, so we only report the final gap. KVC instead often—but not always—reached 1e-4 accuracy before the iteration limit, thus we report both the number of iterations and the final gap.

	dimension		Cplex	FVP		KVC			$\rm{DE}\text{-}L$		AK-Q		
#	N	A	K _l	time	time	gap	time	iter	gap	time iter		time	iter
1	20	226	40	0.05	1.76	$1e-3$	0.12	881	$9e-5$	0.09	12	0.25	1233
$\overline{2}$	20	230	200	17.71	11.07 2e-3		5.39	4738	$1e-4$	16.34	30	10.44	8084
3	20	292	40	0.05		2.17 le-3	0.10	602	$1e-4$	0.09	10	0.12	480
4	20	292	200	16.42	14.12	$1e-3$	6.08	4604	$1e-4$	12.54	28	8.50	5225
5	30	519	100	9.48	16.53 2e-3		3.15	3709	$2e-4$	10.05	34	8.05	7073
6	30	519	400	191.30	87.07	$1e-3$	20.62	4631	$1e-4$	80.28	25	57.42	6713
7	30	684	100	7.04	24.85 2e-3		3.27	3141	$1e-4$	10.90	53	5.03	3499
8	30	692	400	450.36	125.89	$1e-3$	26.16	4903	$2e-4$	188.33	32	82.67	9830
9	20	300	100	5.73	10.21	$3e-3$	2.52	5000	$2e-4$	7.36	35	3.62	5181
10	20	300	200	26.62	24.29 1e-3		6.65	5000	$2e-4$	19.96	30	10.10	6083
11	20	300	400	42.95	46.54	$1e-3$	17.45	4051	$1e-4$	16.77	26	38.18	5920
12	20	300	800	148.35	107.66	$1e-3$	25.42	3538	$1e-4$	38.32	23	33.76	3232
13	30	600	100	18.68	23.78	1e-3	6.13	4708	$2e-4$	7.93	42	11.16	6496
14	30	600	200	50.89	44.94	$9e-4$	14.09	3368	$1e-4$	8.93	34	25.59	3896
15	30	600	400	104.10	101.11	$8e-4$	20.98	3208	$1e-4$	11.51	22	30.55	3345
16	30	600	800	732.87	199.27	$9e-4$	52.98	3093	$1e-4$	61.28	25	84.30	3761
17	50	1200	100	51.91	56.21	$1e-3$	10.74	3580	$1e-4$	3.69	48	33.20	8985
18	50	1200	200	224.47	101.93	$1e-3$	30.42	4666	$1e-4$	34.27	43	59.89	7536
19	50	1200	400	833.57	227.48	$9e-4$	79.22	4499	$1e-4$	52.60	34	154.41	7630
20	50	1200	800	3749.56	468.26 8e-4		180.41	4900	$1e-4$	76.22	25	168.72	4174

Table 1 Comparison of the best SM with Cplex and Bundle methods

The results are reported in Table [1,](#page-20-0) which shows some interesting trends.

 While for small-scale instances direct use of an LP solver is the best option, de- composition approaches become more and more competitive as the size grows. Often the Bundle method using "complex" master problems (DE-L) is the best option; the approach also has the advantage that one can get very high-quality dual solutions, and the corresponding accurate optimal primal solutions, with ϵ_{66} a comparatively minor increase in effort [\[29\]](#page-29-8). However, as the size increases, the master problem cost becomes very high; thus, methods that use cheaper master problems can be competitive even if they require many more iterations. ϵ_{679} In particular, with only one exception (group 20), KVC is faster than AK-Q, while obtaining a roughly comparable gap; it is fair to remark, however, that KVC did not always attain the required 1e-4 accuracy, although it was always pretty close, whereas AK-Q always did. Yet, this confirms previous experience [\[13\]](#page-29-5) that aggregated Bundle methods do not always attain significantly higher convergence rates than well-tuned SM, despite collecting far more information and paying the corresponding price in terms of master problem time. Inter- $\frac{686}{686}$ estingly, in several cases (groups 2, 4–8, 10 and 12), KVC obtains comparable gaps than DE-L in less time, often significantly so. These results requiring ac- curate selection of the many parameters, and partly hinge on the availability of (at least approximate) bounds on the optimal value of the problem; hence, standard techniques like the use of general-purpose solvers, or even more stable nondifferentiable optimization approaches like Bundle methods, can be more appropriate if these conditions are not met. However, our study confirms that appropriately tuned SM can be competitive for efficiently computing (not too

tight) bounds for hard, large-scale IPs.

4 Conclusion

 We have computationally analysed a large class of Subgradient Methods, cov- ering many of the ones proposed in the literature so far, for the solution of large-scale Lagrangian Duals of hard Integer Programs. The specific features of this application are that the number of variables is large, the computation of the function decomposes into many independent problems, and only a rel- atively poor accuracy is required. Our results show that, although the total number of variants (comprised the possible settings for the numerical algorith- mic parameters) is rather large, it is not exceedingly difficult to find settings that work reasonably well across a large family of instances. Provided that the appropriate tuning is made, SM perform roughly as expected: while their global rate of convergence is far from being appealing, their very low cost per iteration—in particular, outside of the function computation—can make up for it as long as a relatively coarse bound is required.

 Our interest in performing these experiments was partly about understand- ing the computational significance of the theory developed in [\[21\]](#page-29-1). In this sense, we can report that the ideas developed therein actually seem to have an impact: deflecting is indeed crucial for good performances of a SM, and deflection and projection do work better together (cf. Table [2\)](#page-27-0). Interestingly, deflection-restricted approaches, developed for proving theoretical convergence of SM, actually seem to work well in practice in some cases (cf. Table [3\)](#page-28-6). What mostly motivated our interest, however, was the hope that two relatively re- cent additions to the arsenal of SM, namely incremental and primal-dual ap- proaches, could significantly improve the performances with respect to more "traditional" ones. Limited to the very specific instances and problems we have tested, and against our expectations, this proved less successful. In hindsight, this might have been expected for incremental methods: the size of the vari- ables space is large, while the subproblems are of very low complexity, which means that the "fixed cost" for each iteration (even if AS techniques are ap- $_{724}$ plied) largely makes partial computation of f irrelevant. There very likely are IPs where these trade-offs are different, and therefore incremental methods can be competitive, especially if theoretical developments—e.g., along the lines of [\[63\]](#page-31-7)—would allow incorporating deflection techniques. As far as PDSM are concerned, the results are promising in that they show a very consistent be- haviour with a much lower need of tuning parameters. Still, carefully tuned version of traditional SM can significantly outperform them in most scenarios. Our results seem to suggest that PDSM may be improved in practice by:

– exploiting information about the optimal value of the problem;

– adapting the approach to cope with an active-set strategy;

 – adapting the theory to cope with cases where the feasible set, and even worse the optimal set, is unbounded.

We hope that our analysis will stimulate further research along these lines.

 A different line of research concerns the actual use of SM within enumer- ative approaches for the IP. In such a framework, trading faster bound com- putation for lower bound quality can indeed improve the overall efficiency of the approach, but only if the right trade-offs are made. Furthermore, solution of the LD is required not once, but in each B&C node; hence, reoptimization techniques, whereby the information generated at the parent node is exploited to improve the solution time at its descendants, become crucial. Which SM are more efficient in this context, in terms of the global running time of the enumerative algorithm rather than of any single bound computation, is an open question that we intend to pursue in the future.

Acknowledgements

 The first author acknowledge the contribution of the Italian Ministry for Uni- versity and Research under the PRIN 2012 Project 2012JXB3YF "Mixed- Integer Nonlinear Optimization: Approaches and Applications". The work of the second author has been supported by NSERC (Canada) under grant 184122-09. The work of the third author has been supported by the Post- Doctoral Fellowship D.R. No 2718/201 (Regional Operative Program Calabria ESF 2007/2013) and the Interuniversity Attraction Poles Programme P7/36 "COMEX: combinatorial optimization metaheuristics & exact methods" of the Belgian Science Policy Office. All the authors gratefully acknowledge the

⁷⁵⁷ contribution of the anonymous referees and of the editors of the journal to

⁷⁵⁸ improving the initial version of the manuscript.

⁷⁵⁹ A Appendix

 We now describe all the details of the SM that we have tested, together with the results of the tuning phase. We remark that for some parameters it is nontrivial even to set a reasonable ranges for the values. Our approach has been to select the initial range heuristically, and then test it: if the best value consistently ended up being at one extreme, this was taken as indication that the interval should be enlarged accordingly. This hinges on the assumption that the behaviour of the algorithm is somewhat "monotonic" in the parameters; while this is not necessarily true, for the vast majority of parameters a "monotonic" behaviour has been verified experimentally, in that we almost never found the case where different settings "far apart" provided better performances than these "in the middle."

⁷⁶⁹ A.1 General parameters of SM

⁷⁷⁰ The following parameters are common to all variants of SM we tested, basically irrespective ⁷⁷¹ of the specific rules for choosing the stepsize and the deflection.

- 772 We denote by $\mathbf{pr} \subseteq \{g_i, d_{i-1}, d_i\}$ the subset of vectors that are projected on the tangent cone T_i of Λ at $\overline{\lambda}_i$; in all our tests. \mathbf{pr} does not depend on the iteration. As tangent cone T_i of Λ at $\bar{\lambda}_i$; in all our tests, pr does not depend on the iteration. As 274 already remarked, $\mathbf{pr} = \{g_i, d_{i-1}, d_i\}$ makes no sense as T_i is convex. Furthermore, when no deflection is done $d_i = g_i$ and therefore only $\mathbf{pr} = \{g_i\}$ and $\mathbf{pr} = \emptyset$ make sense.
- 775 when no deflection is done $d_i = g_i$ and therefore only $pr = \{g_i\}$ and $pr = \emptyset$ make sense.
776 Regarding the order in which the stepsize and the deflection are chosen, we denote by Regarding the order in which the stepsize and the deflection are chosen, we denote by $\mathbf{g} \in \{\text{drs, dro}\}, \text{sr0, srs, sro}\}$ the four possible schemes, where "dr" and "sr" refer to the deflection-restricted and stensize-restricted approach respectively while "s" and "0" deflection-restricted and stepsize-restricted approach, respectively, while "s" and "0" r_{79} refer to using or not the safe rule $((10)$ $((10)$ and (9) , respectively). Of course, drs and dr0 ⁷⁸⁰ only apply if deflection is performed.
- 781 We denote by χ the parameter used to adjust the Lipschitz constant L in the incremental ⁷⁸² case, cf. [\(14\)](#page-12-2), for which we tested the values $\chi = 1e-v$ for $v \in \{0, \ldots, 8\}$.
⁷⁸³ – For the AS, one crucial decision is how often separation is performed: doin
- ⁷⁸³ For the AS, one crucial decision is how often separation is performed: doing it less often ⁷⁸⁴ avoids some computations, but at the risk of ignoring possibly relevant information for too long. We performed separation after the fixed number $s_1 \in \{0, 1\}$ of iterations, i.e.,
either not using the AS at all or separating every iteration. Initial tests showed that ⁷⁸⁶ either not using the AS at all or separating every iteration. Initial tests showed that 787 larger values of s_l were not effective.
- ⁷⁸⁸ A.2 Parameters of the SR
- ⁷⁸⁹ We now examine in details the parameters of the three SR. Since all of them have the form 790 [\(7\)](#page-6-0), we are looking at different ways for determining β_i and f_i^{lev} .

791 Polyak In this SR β_i and f_i^{lev} are kept fixed at all iterations. Here, we exploit the fact t_{1} that in our application we know have "target value" \underline{f} and simply test the two cases f^{lev} 793 ${f_*, 10\%f_*}$. As for the other parameter, we tested $\bar{\beta} \in \{0.01, 0.1, 1, 1.5, 1.99\}$.

COLOTTV This SR is based on the improvement $\Delta f = \bar{f}_{i-1} - f_i$ of f and the scalar product $d_i a_i$ to estimate "how successful a step has been." Note, however, that in deflection-restricted $d_i g_i$ to estimate "how successful a step has been." Note, however, that in deflection-restricted 796 schemes (i.e., drs and dr0) d_i is not available and we use $d_{i-1}g_i$ instead. Iteration i is marked 797 as green if $d_i g_i > \rho$ and $\Delta f \ge \rho \max\{|f_i^{\text{rec}}|, 1\}$, as yellow if $d_i g_i < \rho$ and $\Delta f \ge 0$, and 798 as red otherwise, where $\rho > 0$ is a tolerance. Intuitively, green is a "good" step possibly *799* indicating that a larger ν_i may have been preferable, whereas **red** is a "bad" one suggesting that ν_i is too large. Given three parameters c_n , c_n and c_r , and denoting by n_a , n_u and n_r that ν_i is too large. Given three parameters c_q, c_y and c_r , and denoting by n_q, n_y and n_r 801 the number of *consecutive* green, yellow and red iterations, respectively, β_i is updated as:

- 802 1. if $n_g \geq c_g$ then set $\beta_i = \min\{2, 2\beta_{i-1}\};$
803 2. if $n_g \geq c_g$ then set $\beta_i = \min\{2, 1, 1\beta_{i-1}\}$
- 2. if $n_y \ge c_y$ then set $\beta_i = \min\{2, 1.1\beta_{i-1}\};$

804 3. if $n_r \geq c_r$ then then set $\beta_i = \max\{5e-4, 0.67\beta_{i-1}\};$
805 4. if none of the above cases occur, then set $\beta_i = \beta_{i-1}$.

4. if none of the above cases occur, then set $\beta_i = \beta_{i-1}$.

806 One important parameter is therefore the arbitrarily fixed value β_0 . Also, the SR includes a sor simple target-following scheme whereby if $f_i \leq 1.05 f_i^{lev}$ then $f_i^{lev} = f_i - 0.05 f_i^{lev}$ (note that this never happens for $f^{lev} = 10\% f_$). For this SR we kept $ρ = 1e−6$ fixed and we tested all 809 combinations of $\beta_0 \in \{0.01, 0.1, 1, 1.5, 1.99\}$, $c_g \in \{1, 10, 50\}$, $c_y \in \{50, 100, 400\}$,

and $c_r \in \{10, 20, 50\}.$

811 **FumeroTV** This SR has a complex management of f_i^{lev} and $β_i$, motivated by experimental ⁸¹² considerations [\[31\]](#page-30-4), that is subdivided into two distinct phases. The switch between the two 813 is an iteration counter r, that is increased each time there is no improvement in the function 814 value. This counter is used to define the exponential function $\sigma(r) = e^{-0.6933(r/r_1)^{3.26}}$, s15 where *r*₁ is a parameter; note that $σ(r_1) ≈ 1/2$, which is how the two apparently weird numerical parameters have been selected. The function *σ*, which is decreasing in *r*, is used numerical parameters have been selected. The function σ , which is decreasing in r, is used ⁸¹⁷ in two ways. The first is to determine the maximum number of non-improving steps, which 818 is the smallest integer r_2 such that $\sigma_{\infty} \geq \sigma(r_2)$, where the threshold $\sigma_{\infty} > 0$ is another
819 parameter: given r_1 and σ_{∞} , r_2 can be obtained with a simple closed formula. The second parameter: given r_1 and σ_{∞} , r_2 can be obtained with a simple closed formula. The second ⁸²⁰ is to construct at each iteration the value of f_i^{lev} as a convex combination of the known 821 global lower bound \underline{f} (which, not incidentally, this algorithm specifically tailored for IP s22 is the only one to explicitly use) and the current record value as $f_i^{lev} = \sigma(r) \underline{f} + (1 \sigma(r)$ f_i^{rec} . In the first phase, when r varies, the threshold varies as well: as $\sigma(r)$ decreases when r grows, f_i^{lev} is kept closer and closer to f_i^{rec} as the algorithm proceeds. In the second when r grows, f_i^{lev} is kept closer and closer to f_i^{rec} as the algorithm proceeds. In the second 825 phase $(r \ge r_2)$, where r is no longer updated, $\sigma(r) = \sigma_{\infty}$. The procedure for updating r and β_i uses four algorithmic parameters: a tolerance $\delta > 0$ two integer numbers n_1 *r* and $β_i$ uses four algorithmic parameters: a tolerance $δ > 0$, two integer numbers $η₁$ 827 and $\eta_2 \geq 1$, and the initial value $\beta_0 \in (0, 2)$. The procedure is divided in two phases, 828 according to the fact that the iteration counter r (initialized to 0) is smaller or larger than the threshold r_2 . Similarly to ColorTV, the rule keeps a record value \bar{f}_i (similar, but not expansive identical, to f_i^{rec} and declares a "good" step whenever $f_i \leq \bar{f}_i - \delta \max\{|\bar{f}_i|, 1\}$, in which case \bar{f} is updated to f_i . In either phase, the number of consecutive "non-good" 832 steps is counted. In the first phase, after $\bar{\eta}_2$ such steps r is increased by one, and β_i is 833 updated as $\beta_i = \beta_{i-1}/(2\beta_{i-1} + 1)$. In the second phase r is no longer updated: after 834 every "good" step β_i is doubled, whereas after $\bar{\eta}_1$ "non good" steps β_i is halved. In the 835 tuning phase we tested the following values for the parameters: $\sigma_{\infty} \in \{$ 1e-4, 1e-3, 1e-2 836 }, $\delta = 1e-6$, $r_1 \in \{10, 50, 100, 150, 200, 250, 300, 350\}$, $\beta_0 \in \{0.01, 0.1, 1, 1.5, 1.99\}$, $\eta_1 \in \{ 10, 50, 100, 150, 200, 250, 300, 350 \}, \eta_2 \in \{ 10, 50, 100, 150, 200 \}.$

⁸³⁸ A.3 Parameters of the DR

839 We now describe in details the two "complex" DR that we have tested (STSubgrad, where $a_i \quad \alpha_i = 1 \Longrightarrow d_i = g_i$ and $\bar{\lambda}_{i+1} = \lambda_{i+1}$ for all *i*, hardly needs any comment). Note that the selection of $\bar{\lambda}_{i+1}$ is also done by the **Deflection**() object. selection of $\bar{\lambda}_{i+1}$ is also done by the Deflection() object.

⁸⁴² Primal-Dual The PDSM is based on a sophisticated convergence analysis aimed at ob-843 taining optimal a-priori complexity estimates [\[54\]](#page-30-19). A basic assumption of PDSM is that $Λ$ 844 is endowed with a *prox-function* $d(\lambda)$, and that one solves the modified form of [\(1\)](#page-2-0)

$$
\min\{f(\lambda) : d(\lambda) \le D, \lambda \in \Lambda\} \tag{21}
$$

845 restricted upon a compact subset of the feasible region, where $D \geq 0$ is a parameter. D is a parameter is never directly used in the algorithm, except to optimally tune its parameters: hence, (21) never directly used in the algorithm, except to optimally tune its parameters; hence, [\(21\)](#page-24-0) α can always be considered if f has a minimum λ_* . In particular, we take $d(\lambda) = ||\lambda - \lambda_0||^2/2$, 848 in which case $D = ||\lambda_* - \lambda_0||^2/2$. In general D is unknown; however, the parameter "t^{*}" in the stopping formulæ $(12)/(13)$ $(12)/(13)$ is somehow related. Roughly speaking, t^* estimates how far 850 at most one can move along a subgradient $g_i \in \partial f(\lambda_i)$ when λ_i is an approximately optimal
851 solution. The parameter, that it used in the same way by Bundle methods, is independent solution. The parameter, that it used in the same way by Bundle methods, is independent ⁸⁵² from the specific solution algorithm and has been individually tuned (which is simple enough, ex-post); hence, $D = (t^*)^2 L$ is a possible estimate. Yet, t^* is supposed to measure $||\lambda^* - \lambda_i||$ 854 for a "good" λ_i , whereas D requires the initial λ_0 , which typically is not "good": hence,

855 we introduced a further scaling factor $F > 0$, i.e., took $\gamma = (F\sqrt{L})/(t^*\sqrt{2})$ for SA and ⁸⁵⁶ $\gamma = F/(t^*/2L)$ for WA (cf. [\(25\)](#page-25-0)), and we experimentally tuned F. In general one would $\text{sec} \times F > 1$, and the results confirm this; however, to be on the safe side we tested all the 858 values $F \in \{$ 1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4 $\}$. As suggested by one Referee 859 we also tested using $D = ||\lambda_* - \lambda_0||^2/2$, with λ_* obtained by some previous optimization. 860 The results clearly showed that the "exact" estimate of D not always translated in the best ⁸⁶¹ performances; in particular, for the FR the results were always consistently worse, whereas ⁸⁶² for the KR the results were much worse for WA, and completely comparable (but not any 863 better) for SA. This is why in the end we reported results with the tuned value of F .

⁸⁶⁴ For the rest, PDSM basically have no tunable parameters. It has to be remarked, how-⁸⁶⁵ ever, that PDSM are not, on the outset, based on a simple recurrence of the form [\(5\)](#page-3-0); rather, 866 given two sequences of weights $\{v_i\}$ and $\{\omega_i\}$, the next iterate is obtained as

$$
\lambda_{i+1} = \operatorname{argmin} \{ \lambda \sum_{k=1}^{i} v_k g_k + \omega_i d(\lambda) : \lambda \in \Lambda \} . \tag{22}
$$

 $\text{Set}, \text{ when } A = \mathbb{R}^n \ (22) \text{ readily reduces to } (5), \text{ as the following Lemma shows.}$ $\text{Set}, \text{ when } A = \mathbb{R}^n \ (22) \text{ readily reduces to } (5), \text{ as the following Lemma shows.}$ $\text{Set}, \text{ when } A = \mathbb{R}^n \ (22) \text{ readily reduces to } (5), \text{ as the following Lemma shows.}$ $\text{Set}, \text{ when } A = \mathbb{R}^n \ (22) \text{ readily reduces to } (5), \text{ as the following Lemma shows.}$ $\text{Set}, \text{ when } A = \mathbb{R}^n \ (22) \text{ readily reduces to } (5), \text{ as the following Lemma shows.}$

868 Lemma 1 Assume $\Lambda = \mathbb{R}^n$, select $d(\lambda) = ||\lambda - \lambda_0||^2/2$, fix $\lambda_i = \lambda_0$ for all $i \geq 0$ in [\(5\)](#page-3-0). By $_{{\rm 869}}$ defining $\Delta_{i}=\sum_{k=1}^{i}v_{k},$ the following DR and SR

$$
\alpha_i = v_i/\Delta_i \ \ (\in [0,1]) \qquad \text{and} \qquad \nu_i = \Delta_i/\omega_i \tag{23}
$$

870 are such that λ_{i+1} produced by [\(22\)](#page-25-1) is the same produced by [\(5\)](#page-3-0) and [\(8\)](#page-7-2).

⁸⁷¹ Proof Under the assumptions, [\(22\)](#page-25-1) is a strictly convex unconstrained quadratic problem, ⁸⁷² whose optimal solution is immediately available by the closed formula

$$
\lambda_{i+1} = \lambda_0 - (1/\omega_i) \sum_{k=1}^i \upsilon_k g_k \quad . \tag{24}
$$

⁸⁷³ This clearly is [\(5\)](#page-3-0) under the SR in [\(23\)](#page-25-2) provided that one shows that the DR in [\(23\)](#page-25-2) produces

$$
d_i = \left(\sum_{k=1}^i v_k g_k\right) / \Delta_i .
$$

874 This is indeed easy to show by induction. For $i = 1$ one immediately obtains $d_1 = g_1$. For ⁸⁷⁵ the inductive case, one just has to note that

$$
1 - \frac{v_{i+1}}{\Delta_{i+1}} = \frac{\Delta_{i+1} - v_{i+1}}{\Delta_{i+1}} = \frac{\Delta_i}{\Delta_{i+1}}
$$

⁸⁷⁶ to obtain

$$
d_{i+1} = \alpha_{i+1}g_{i+1} + (1 - \alpha_{i+1})d_i = \frac{v_{i+1}}{\Delta_{i+1}}g_{i+1} + \frac{\Delta_i}{\Delta_{i+1}}\frac{\sum_{k=1}^i v_kg_k}{\Delta_i} = \frac{1}{\Delta_{i+1}}\sum_{k=1}^{i+1}v_kg_k. \quad \Box
$$

877 Interestingly, the same happens if simple sign constraints $λ ≥ 0$ are present, which is what we actually have whenever $Λ ≠ ℝⁿ$. 878 we actually have whenever $\Lambda \neq \mathbb{R}^n$.

 F_3 **Lemma 2** If $\Lambda = \mathbb{R}^n_+$, the same conclusion as in Lemma [1](#page-25-2) hold after $P_\Lambda(\lambda_{i+1})$.

Proof It is easy to see that the optimal solution of [\(22\)](#page-25-1) with $\Lambda = \mathbb{R}^n_+$ is equal to that with $\Lambda = \mathbb{R}^n$, i.e. [\(24\)](#page-25-3), projected over \mathbb{R}^n_+ . \mathbb{Z} +. \Box

Therefore, implementing the DR and the SR as in [\(23\)](#page-25-2), and never updating $\bar{\lambda}_i = \lambda_0$, allow

881 us to fit PDSM in our general scheme. To choose v_i and ω_i we follow the suggestions in

882 [\[54\]](#page-30-19): the SA approach corresponds to $v_i = 1$, and the WA one to $v_i = 1/||g_i||$. We then set
883 $\omega_i = \gamma \hat{\omega}_i$, where $\gamma > 0$ is a constant, and $\hat{\omega}_0 = \hat{\omega}_1 = 1$, $\hat{\omega}_2 = \hat{\omega}_2 = 1 + 1/\hat{\omega}_3$, 1 for $i > 2$. $\omega_i = \gamma \hat{\omega}_i$, where $\gamma > 0$ is a constant, and $\hat{\omega}_0 = \hat{\omega}_1 = 1$, $\hat{\omega}_i = \hat{\omega}_{i-1} + 1/\hat{\omega}_{i-1}$ for $i \geq 2$,

which implies $\hat{\omega}_{i+1} = \sum_{k=0}^{i} 1/\hat{\omega}_k$. The analysis in [\[54\]](#page-30-19) suggests settings for γ that provide ⁸⁸⁵ the best possible theoretical convergence, i.e.,

$$
\gamma = L/\sqrt{2D} \qquad \text{and} \qquad \gamma = 1/\sqrt{2D} \quad , \tag{25}
$$

886 for the SA and WA, respectively, L being the Lipschitz constant of f .

,

887 Volume In this DR, α_i is obtained as the optimal solution of a univariate quadratic prob-⁸⁸⁸ lem. As suggested in [\[5\]](#page-28-0), and somewhat differently from the original [\[6\]](#page-29-2), we use exactly the

⁸⁸⁹ "poorman's form" of the master problem of the proximal Bundle method

$$
\min \{ \nu_{i-1} \|\alpha g_i + (1 - \alpha)d_{i-1}\|^2 / 2 + \alpha \sigma_i(\bar{\lambda}_i) + (1 - \alpha)\epsilon_{i-1}(\bar{\lambda}_i) : \alpha \in [0, 1] \} \tag{26}
$$

where the linearization errors $\sigma_i(\bar{\lambda}_i)$ and $\epsilon_{i-1}(\bar{\lambda}_i)$ have been discussed in details in §[2.2.](#page-9-0)

891 Note that we use the stepsize ν_{i-1} of the previous iteration as stability weight, since that ⁸⁹² term corresponds to the stepsize that one would do along the dual optimal solution in a

893 Bundle method $[3, 5, 25]$ $[3, 5, 25]$ $[3, 5, 25]$. It may be worth remarking that the dual of (26)

$$
\min\left\{\,\max\{\,g_i d - \sigma_i(\bar{\lambda}_i)\,,\,d_{i-1} d - \epsilon_{i-1}(\bar{\lambda}_i)\,\} + \|d\|^2/(2\nu_{i-1})\,\right\}\,\,,\tag{27}
$$

where $d = \lambda - \bar{\lambda}_i$, is closely tied to [\(22\)](#page-25-1) in PDSM. The difference is that [\(27\)](#page-26-1) uses two (approx-
sos—imate) subgradients, a_i and d_i , whereas in (22) one uses only one (approximate) subgradient imate) subgradients, g_i and d_i , whereas in [\(22\)](#page-25-1) one uses only one (approximate) subgradient ⁸⁹⁶ obtained as weighted average of the ones generated at previous iterations. Problem [\(26\)](#page-26-0) is

897 inexpensive, because without the constraint $\alpha \in [0,1]$ it has the closed-form solution

$$
\alpha_i^* = \frac{\epsilon_{i-1}(\bar{\lambda}_i) - \sigma_i(\bar{\lambda}_i) - \nu_{i-1}d_{i-1}(g_i - d_{i-1})}{\nu_{i-1}||g_i - d_{i-1}||^2}
$$

⁸⁹⁸ and thus one can obtain its optimal solution by simply projecting α_i^* over [0, 1]. However, 899 as suggested in [\[5,](#page-28-0)6] we rather chose α_i in the more safeguarded way

$$
\alpha_i = \begin{vmatrix}\n\alpha_{i-1}/10 & \text{if } \alpha_i^* \leq 1\mathbf{e} - 8 \\
\min\{\tau_i, 1.0\} & \text{if } \alpha_i^* \geq 1 \\
\alpha_i^* & \text{otherwise}\n\end{vmatrix}
$$

900 where τ_i is initialized to τ_0 , and each τ_p iterations is decreased multiplying it by τ_f < 901 1, while ensuring that it remains larger than τ_{\min} . The choice of the stability center is 902 also dictated by a parameter $m > 0$ akin that used in Bundle methods: if $f_i - f_{i+1} \geq$ ⁹⁰³ m max $\{1, |f_{i-}^{ref}|\}$ a Serious Step occurs and $\bar{\lambda}_{i+1} = \lambda_{i+1}$, otherwise a Null Step takes place and $\bar{\lambda}_{i+1} = \bar{\lambda}_i$. For the tuning phase we have searched all the combinations of the following 905 values for the above parameters: $\tau_0 \in \{0.01, 0.1, 1, 10\}$, $\tau_p \in \{10, 50, 100, 200, 500\}$, 906 $\tau_f \in \{0.1, 0.4, 0.8, 0.9, 0.99\}, \tau_{\min} \in \{ \text{ 1e-4, 1e-5 } \}, m \in \{0.01, 0.1\}.$

⁹⁰⁷ A.4 Detailed results of the tuning phase

 The tuning phase required a substantial computational work, and a nontrivial analysis of 909 the results. As discussed in §[3.2,](#page-13-0) each SM configuration gave rise to an aggregated conver-
910 gence graph. To select the best configurations, the graphs were visually inspected, and the gence graph. To select the best configurations, the graphs were visually inspected, and the ones corresponding to a better overall convergence rates were selected. This usually was the configuration providing the best final gap for all instances. Occasionally, other configura- tions gave better results than the chosen one in the earlier stages of the algorithm on some subsets of the instances; usually the advantage was marginal at best, and only on a fraction of the cases, while the disadvantage in terms of final result was pronounced. In general it has always been possible to find "robust" settings that provided the best (or close so) gap at termination, but were not too far from the best gaps even in all the other stages. Further- more, although the total number of possible combinations was rather large, it turned out that only a relatively small set of parameters had a significant impact on the performances, and in most of the cases their effect was almost orthogonal to each other. This allowed us to effectively single out "robust" configurations for our test sets; for several of the param- eters, the "optimal" choice has been unique across all instances, which may provide useful indications even for different problems.

 For the sake of clarity and conciseness, in Tables [2](#page-27-0) and [3,](#page-28-6) we report the chosen values of the parameters for FR and KR, respectively, briefly remarking about the effect of each parameter and their relationships. The behaviour of SM was pretty similar in the two cases $f = f_*$ and $f = 10\% f_*$; hence, the tables report the values for $f = f_*,$ indicating in "[]" these 928 for $f = 10\% f_*$ if they happen to be different. The tables focus on the combinations between the three SR and the two DR, plus the incremental case; the parameters of Primal-Dual variant are presented separately since the SR is combined with the DR.

931 Results for the FR. The results for FR are summarized in Table [2,](#page-27-0) except for those ⁹³² settings that are constantly optimal. In particular, STSubgrad and Incremental have better 933 performances with $pr = \{g_i\}$, irrespective of the SR. For Volume, instead, the optimal setting of pr does depend on the SR, although $pr = \{d_i\}$ and $pr = \{d_{i-1}\}$ were hardly different. All 934 of pr does depend on the SR, although pr = $\{d_i\}$ and pr = $\{d_{i-1}\}$ were hardly different. All 935 the other parameters of Volume depend on the SR (although the stepsize-restricted scheme ⁹³⁵ the other parameters of Volume depend on the SR (although the stepsize-restricted scheme 936 with no safe rule is often good), except τ_{\min} and m that are always best set to 1e-4 and ⁹³⁷ 0.1, respectively. Another interesting observation is that, while Volume does have several ⁹³⁸ parameters, it does seem that they operate quite independently of each other, as changing ⁹³⁹ one of them always has a similar effect irrespective of the others. We also mention that for 940 ColorTV the parameters c_y and c_r have little impact on the performance, whereas c_g plays ⁹⁴¹ an important role and it significantly influences the quality of the results. As for FumeroTV, 942 σ_{∞} and η_2 have hardly any impact, and we arbitrarily set them to 1e-4 and 50, respectively.

Table 2 Optimal parameters for the Flow Relaxation

943 In PDSM, the only crucial value is F, used to compute the optimal value of γ in [\(25\)](#page-25-0). We ⁹⁴⁴ found its best value to be 1e2 and 1e3 for SA and WA, respectively. The choice has a large ⁹⁴⁵ impact on performances, which significantly worsen for values far from these.

 Results for the KR. The best parameters for the KR are reported in Table [3.](#page-28-6) Although the best values are in general different from the FR, confirming the (unfortunate) need for problem-specific parameter tuning, similar observations as in that case can be made. For instance, for Volume, the parameters were still more or less independent from each other, and τ_{min} and m were still hardly impacting, with the values 1e-4 and 0.1 still very adequate. For ColorTV, results are again quite stable varying cy. Yet, differences can be noted: for instance, for FR c_g is clearly the most significant parameter and dictates most of the performance 953 variations, while for the KR the relationship between the two parameters c_r and c_g and the 954 results is less clear. Similarly, for FumeroTV some settings are conserved: σ_{∞} and η_2 have very little effect and can be set to 1e-4 and 50, respectively. Other cases were different: for 956 instance the parameters η_1 , r_1 and β_0 were more independent on each other than in the FR. The parameters of Primal-Dual showed to be quite independent from the underlying 958 Lagrangian approach, with the best value of F still being 1e2 for SA and 1e3 for WA. This confirms the higher overall robustness of the approach.

⁹⁶⁰ We terminate the Appendix with a short table detailing which of the variants of SM ⁹⁶¹ that we tested have a formal proof of convergence and where it can be found, indicating the 28 Antonio Frangioni et al.

		Polyak		$\overline{\text{Color}}$ TV		FumeroTV				
		β_i	β_0	C_g	c_v	$C_{\rm r}$	β_0	r_1	η_1	
		0.1	0.1	50	50	50	0.1	10	10	
						[10]		[50]	[50]	
	τ_0	1	1				1[10]			
Volume	τ_f	.9 [.8]		$.8$ [.9]		.99 [.8]				
	τ_i	50		100[50]		50 [200]				
	sg	$dr0$ [srs]		$dr0$ [srs]		$dr0$ [drs]				
		1.5	.01	50	50	50	1.99	50	250	
STSubgrad		$[.1] % \includegraphics[width=0.9\columnwidth]{figures/fig_1a} \caption{The average number of times of the number of times. The number of times in the right, the number of times in$						[10]	[200]	
	sg	sr0	sr0				sr0			
		1.5	1	50	100	50	1.5	100	100	
Incremental		$[.1]$	$\left[.01 \right]$	[10]			$[1]$	[10]		
	χ	$1e-5$ [1e-6]	$1e-5$				$1e-5$			
	sg	sr0	srs			sr0				

Table 3 Optimal parameters for the Knapsack Relaxation

⁹⁶² references wherein the proofs are given. The columns DR and SR, as usual, indicate which

⁹⁶³ ones among the possible defection and stepsize rules are adopted; an entry "any" means

⁹⁶⁴ that the corresponding proof holds for all the rules. Moreover, PR, AS and IN, respectively,

⁹⁶⁵ stands for the strategies: (i) projection, (ii) active set and (iii) incremental.

DR.	SR.		PR AS IN		Reference
Primal-Dual		no	nο	$\mathbf{n}\mathbf{o}$	$\left[55\right]$
STSubgrad Polyak		no	no	no	[58]
STSubgrad FumeroTV		no	no	nο	$\left[31\right]$
STSubgrad	any	yes	no	no	[21]
STSubgrad	any	no	\mathbf{n}	ves	[9]
Volume	ColorTV	no	nο	nο	6
Volume	any	ves	no	no	21

Table 4 Theoretical convergence proofs of the employed SM

⁹⁶⁶ References

- ⁹⁶⁷ 1. Ahookhosh, M.: Optimal subgradient algorithms with application to large-scale linear ⁹⁶⁸ inverse problems. Tech. rep., Optimization Online (2014)
- ⁹⁶⁹ 2. Anstreicher, K., Wolsey, L.: Two "well-known" properties of subgradient optimization. ⁹⁷⁰ Mathematical Programming 120(1), 213–220 (2009)
- ⁹⁷¹ 3. Astorino, A., Frangioni, A., Fuduli, A., Gorgone, E.: A nonmonotone proximal bundle ⁹⁷² method with (potentially) continuous step decisions. SIAM Journal on Optimization ⁹⁷³ 23(3), 1784–1809 (2013)
- 974 4. Bacaud, L., Lemaréchal, C., Renaud, A., Sagastizábal, C.: Bundle methods in stochastic ⁹⁷⁵ optimal power management: A disaggregated approach using preconditioners. Compu-⁹⁷⁶ tational Optimization and Applications 20, 227–244 (2001)
- 977 5. Bahiense, L., Maculan, N., Sagastizábal, C.: The volume algorithm revisited: Relation ⁹⁷⁸ with bundle methods. Mathematical Programming 94(1), 41–70 (2002)
- 6. Barahona, F., Anbil, R.: The volume algorithm: Producing primal solutions with a subgradient method. Mathematical Programming 87(3), 385–399 (2000)
- 7. Beck, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM Journal on Optimization 22(2), 557–580 (2012)
- 8. Ben Amor, H., Desrosiers, J., Frangioni, A.: On the choice of explicit stabilizing terms in column generation. Discrete Applied Mathematics 157(6), 1167–1184 (2009)
- 985 9. Bertsekas, D., Nedić, A.: Incremental subgradient methods for nondifferentiable opti-mization. SIAM J. on Optimization 12(1), 109–138 (2001)
- 10. Borghetti, A., Frangioni, A., Lacalandra, F., Nucci, C.: Lagrangian heuristics based on disaggregated bundle methods for hydrothermal unit commitment. IEEE Transactions on Power Systems 18(1), 313–323 (February 2003)
- 11. Bot, R., Hendrich, C.: A variable smoothing algorithm for solving convex optimization problems. TOP (2014)
- 992 12. Brännlund, U.: A generalised subgradient method with relaxation step. Mathematical Programming 71, 207–219 (1995)
- 994 13. Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.: Com- parison of bundle and classical column generation. Mathematical Programming 113(2), 299–344 (2008)
- 14. Camerini, P., Fratta, L., Maffioli, F.: On improving relaxation methods by modified gradient techniques. Mathematical Programming Study 3, 26–34 (1975)
- 15. Cappanera, P., Frangioni, A.: Symmetric and asymmetric parallelization of a cost- decomposition algorithm for multi-commodity flow problems. INFORMS Journal on Computing 15(4), 369–384 (2003)
- 16. Censor, Y., Davidi, R., Herman, G., Schulte, R., Tetruashvili, L.: Projected subgradient minimization cersus superiorization. Journal on Optimization Theory and Applications 1004 160(3), 730-747 (2014)
- 17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)
- 18. Crainic, T., Frangioni, A., Gendron, B.: Multicommodity capacitated network design. Telecommunications Network Planning pp. 1–19 (1999)
- 19. Crainic, T., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multi- commodity capacitated fixed charge network design problems. Discrete Applied Math-ematics 112, 73–99 (2001)
- 20. Crema, A., Loreto, M., Raydan, M.: Spectral projected subgradient with a momen- tum term for the Lagrangean dual approach. Computers & Operations Research 34, 31743186 (2007)
- 21. d'Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient methods. SIAM Journal on Optimization 20(1), 357–386 (2009)
- 22. du Merle, O., Goffin, J.L., Vial, J.P.: On improvements to the analytic center cutting plane method. Computational Optimization and Applications 11, 37–52 (1998)
- 23. Feltenmark, S., Kiwiel, K.: Dual applications of proximal bundle methods, including Lagrangian relaxation of nonconvex problems. SIAM Journal on Optimization 10(3), 697–721 (2000)
- 24. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algorithms. Computers & Operations Research 21, 1099–1118 (1996)
- 25. Frangioni, A.: Generalized bundle methods. SIAM Journal on Optimization 13(1), 117–156 (2002)
- 26. Frangioni, A., Gallo, G.: A bundle type dual-ascent approach to linear multicommodity min cost flow problems. INFORMS Journal on Computing 11(4), 370–393 (1999)
- 27. Frangioni, A., Gendron, B.: A stabilized structured Dantzig-Wolfe decomposition method. Mathematical Programming 140, 45–76 (2013)
- 28. Frangioni, A., Gorgone, E.: A library for continuous convex separable quadratic knap-sack problems. European Journal of Operational Research 229(1), 37–40 (2013)
- 29. Frangioni, A., Gorgone, E.: Generalized bundle methods for sum-functions with "easy" components: Applications to multicommodity network design. Mathematical Program-1035 ming **145**(1), 133-161 (2014)
- 30. Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric polytope. Mathematical Programming 104(2-3), 375–388 (2005)
- 31. Fumero, F.: A modified subgradient algorithm for Lagrangean relaxation. Computers
- 1039 and Operations Research $28(1)$, $33-52$ (2001)
1040 32 . Geoffrion, A.: Lagrangian relaxation and its u 32. Geoffrion, A.: Lagrangian relaxation and its uses in iteger programming. Mathematical Programming Study 2, 82–114 (1974)
- 33. Gondzio, J., Gonz´alez-Brevis, P., Munari, P.: New developments in the primal-dual column generation technique. European Journal of Operational Research $224(1)$, $41-$ 51 (2013)
- 1045 34. Görtz, S., Klose, A.: A simple but usually fast branch-and-bound algorithm for the capacitated facility location problem. INFORMS Journal on Computing 24(4), 597610 (2012)
- 35. Guignard, M.: Efficient cuts in Lagrangean 'relax-and-cut' schemes. European Journal of Operational Research 105, 216–223 (1998)
- 36. Held, M., Karp, R.: The traveling salesman problem and minimum spanning trees. Operations Research 18, 1138–1162 (1970)
- 1052 37. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II—Advanced Theory and Bundle Methods, Grundlehren Math. Wiss., vol. 306. Springer-Verlag, New York (1993)
- 38. Ito, M., Fukuda, M.: A family of subgradient-based methods for convex optimization problems in a unifying framework. Tech. rep., Optimization Online (2014)
- 39. Jones, K., Lustig, I., Farwolden, J., Powell, W.: Multicommodity network flows: the impact of formulation on decomposition. Mathematical Programming 62, 95–117 (1993)
- 40. Kelley, J.: The cutting-plane method for solving convex programs. Journal of the SIAM 8, 703–712 (1960)
- 41. Kiwiel, K.: Convergence of approximate and incremental subgradient methods for con-vex optimization. SIAM Journal on Optimization 14(3), 807–840 (2003)
- 42. Kiwiel, K., Goffin, J.: Convergence of a simple subgradient level method. Mathematical Programming 85(4), 207–211 (1999)
- 43. Kiwiel, K., Larsson, T., Lindberg, P.: The efficiency of ballstep subgradient level meth-ods for convex optimization. Mathematics of Operation Research 23, 237–254 (1999)
- 44. Lan, G., Zhou, Y.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Technical report, University of Florida (2014)
- 1069 45. Larsson, T., Patriksson, M., Strömberg, A.B.: Conditional subgradient optimization - theory and applications. European Journal of Operational Research 88(2), 382–403 (1996)
- 1072 46. Larsson, T., Patriksson, M., Strömberg, A.B.: Ergodic, primal convergence in dual sub- gradient schemes for convex programming. Mathematical Programming 86, 283–312 (1999)
- 47. Lemar´echal, C.: An extension of Davidon methods to nondifferentiable problems. In: M. Balinski, P. Wolfe (eds.) Nondifferentiable optimization, Mathematical Programming Study, vol. 3, pp. 95–109. North-Holland, Amsterdam (1975)
- 48. Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications. Mathematical Programming 90, 399–427 (2001)
- 49. Necoara, I., Suykens, J.: Application of a smoothing technique to decomposition in con-vex optimization. IEEE Transactions on Automatic Control 53(11), 2674–2679 (2008)
- 50. Nedic, A., Bertsekas, D.: Incremental subgradient methods for nondifferentiable opti-mization. Mathematical Programming 120, 221–259 (2009)
- 51. Nemirovski, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley (1983)
- 52. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM Jour-nal on Optimization 16, 235–249 (2005)
- 53. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Program-ming 103, 127–152 (2005)
- 54. Nesterov, Y.: Primal-dual subgradient methods for convex optimization. Mathematical Programming 120, 221–259 (2009)
- 55. Nesterov, Y.: Universal gradient methods for convex optimization problems. Mathe-matical Programming (2014)
- 56. Neto, E., De Pierro, A.: Incremental subgradients for constrained convex optimization: A unified framework and new methods. SIAM Journal on Optimization 20(3), 1547– 1572 (2009)
- 57. Ouorou, A.: A proximal cutting plane method using Chebychev center for nonsmooth convex optimization. Mathematical Programming 119(2), 239–271 (2009)
- 58. Polyak, B.: Minimization of unsmooth functionals. Zh.Vychisl.Mat.Fiz. 9(3), 509–521 (1969)
- 59. Sherali, B., Choi, B., Tuncbilek, C.: A variable target value method for nondifferentiable optimization. Operations Research Letters 26, 1–8 (2000)
- 60. Sherali, B., Lim, C.: On embedding the volume algorithm in a variable target value method. Operations Research Letters 32, 455462 (2004)
- 61. Shor, N.: Minimization Methods for Nondifferentiable Functions. Springer-Verlag, Berlin (1985)
- 62. Solodov, M., Zavriev, S.: Error stability properties of generalized gradient-type algo-rithms. Journal of Optimization Theory and Applications 98(3), 663–680 (1998)
- 63. Tseng, P.: Conditional gradient sliding for convex optimization. Mathematical Pro-gramming 125, 263–295 (2010)
- 64. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable func-tions. In: M. Balinski, P. Wolfe (eds.) Nondifferentiable optimization, Mathematical
- Programming Study, vol. 3, pp. 145–173. North-Holland, Amsterdam (1975)