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Abstract Subgradient methods (SM) have long been the preferred way to7

solve the large-scale Nondifferentiable Optimization problems arising from the8

solution of Lagrangian Duals (LD) of Integer Programs (IP). Although other9

methods can have better convergence rate in practice, SM have certain advan-10

tages that may make them competitive under the right conditions. Further-11

more, SM have significantly progressed in recent years, and new versions have12

been proposed with better theoretical and practical performances in some ap-13

plications. We computationally evaluate a large class of SM in order to assess14

if these improvements carry over to the IP setting. For this we build a unified15

scheme that covers many of the SM proposed in the literature, comprised some16

often overlooked features like projection and dynamic generation of variables.17

We fine-tune the many algorithmic parameters of the resulting large class of18

SM, and we test them on two different Lagrangian duals of the Fixed-Charge19

Multicommodity Capacitated Network Design problem, in order to assess the20

impact of the characteristics of the problem on the optimal algorithmic choices.21

Our results show that, if extensive tuning is performed, SM can be competitive22

with more sophisticated approaches when the tolerance required for solution23

is not too tight, which is the case when solving LDs of IPs.24
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Transport (CIRRELT), and Department of Computer Science and Operations Research,
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1 Introduction28

The aim of this paper is to computationally evaluate a large family of ap-29

proaches for the solution of problems of the form30

f∗ = min
{

f(λ) =
∑

k∈K
fk(λ) : λ ∈ Λ

}

(1)

where K is a finite index set, Λ ⊆ R
n is closed, convex and “easy” in the31

sense that projection upon Λ is inexpensive, and fk : Rn → R are proper con-32

vex functions. The generalized gradient descent method, a.k.a. the Subgradient33

Method (SM), is the extension of the gradient method for smooth optimiza-34

tion introduced in the 60s [61] that solves (1) under very mild conditions.35

In particular, each of the functions fk need only be known through a “black36

box” that, given λ ∈ Λ, returns the function value fk(λ) and a subgradient37

gk ∈ ∂fk(λ). Then, after computing f(λ) according to (1), and similarly for38

∑

k∈K
gk = g ∈ ∂f(λ), the algorithm employs the simple recurrence formula39

λ̃i+1 = λi − νigi , λi+1 = PΛ(λ̃i+1) , (2)

where P denotes the orthogonal projection on Λ. Only very simple rules are40

required to the stepsize νi ∈ R+ to ensure that the sequence { fi = f(λi) }41

asymptotically solves (1), i.e., lim infi→∞ fi = f∞ = f∗. Under mild additional42

assumptions, cluster points of {λi } also are optimal solutions to (1).43

SM require Θ(1/ǫ2) iterations to solve (1) up to absolute error ǫ, which44

means that they are not practical for attaining any more than a modest ac-45

curacy. Yet, that is also the best possible worst-case complexity for the min-46

imization of a generic nondifferentiable function only known via a black box47

[51]. Besides, the complexity is independent of the size n of the problem.48

Therefore, SM may be promising for very-large-scale problems where a high49

accuracy is not necessary, whereas a short running time is a primary concern.50

This happens to be often the case when f is the Lagrangian function of a hard51

optimization problem, say a block-structured Integer Program (IP)52

max
{

∑

k∈K
ckuk :

∑

k∈K
Akuk = b , uk ∈ Uk k ∈ K

}

, (3)

where one relaxes, in a Lagrangian fashion, the complicating constraints that53

link together blocks of variables that would otherwise be independent, yielding54

f(λ) = λb +
∑

k∈K

(

fk(λ) = max
{

(ck − λAk)uk : uk ∈ Uk
} )

. (4)

Often the sets Uk are “hard”, say encompassing integrality restrictions, so that55

(3) is a “hard” problem. Thus, (4) is less hard than (3) if only because it de-56

composes into smaller independent subproblems. In some cases (4) is simpler57

even if |K| = 1 since U1 has a specific structure that can be algorithmically58

exploited; sometimes, as in §3.1, both effects apply. Therefore, to simplify the59
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notation we will write cu, Au = b and U respectively for the objective function,60

linking constraints and feasible region in (3)/(4) when the sum-function struc-61

ture is better ignored. We also remark that there is a slight (and intended)62

inconsistency between (4) and (1), in that the former actually has |K| + 163

functions counting the linear one λb; we will ignore this detail (say, assume64

b = 0) up until it becomes relevant.65

The Lagrangian relaxation (4) of the IP (3), although not the only appli-66

cation of SM, has been one of the main factors motivating the interest in this67

class of algorithms. After the seminal [36], the use of Lagrangian Duals (LD)68

[32] has been a staple of integer optimization for over two decades, during69

which “Lagrangian relaxation” has invariably been a synonym of “solving a70

LD by a SM.” In fact, some of the improvements on the SM originate from the71

IP community, such as the deflection techniques introduced in [14] to face the72

“zig-zagging” behaviour whereby gi+1 ≈ −gi, so that two “reasonably long”73

steps combined make an “unfeasibly short” one. This leads to replace (2) with74

λ̃i+1 = λi − νidi (5)

where the direction di is obtained by some linear combination of the current75

subgradient gi and the previous direction di−1. In the constrained case, the76

fact that di is chosen without regard of the feasible set Λ also independently77

causes the zig-zagging phenomenon, unless conditional subgradient techniques78

[45] are employed whereby di is first projected on the tangent cone of Λ at λi79

(it is somewhat surprising that the combination of deflection and projection80

has not been analyzed until [21]). Again, IP has been the main motivation for81

their development: inequality constraints Au ≤ b in (3) give Λ = R
n
+. Also,82

stepsize rules have been developed specifically for integer optimization [6,31].83

The appeal of SM has started to decrease during the early 90s, for dif-84

ferent reasons. On one hand, the success of polyhedral techniques has meant85

that Branch&Cut (B&C) approaches based on standard Linear Programming86

(LP) techniques have rapidly became the method of choice for the solution of87

IPs. On the other hand, Cutting-Plane (CP) methods for solving (1) had been88

known for almost as long as SM [40], and variants have been developed over89

the years that have been proven to be superior to SM in many circumstances.90

In particular, both Bundle methods [37,47,64] and center-based methods [22]91

(the latter often [33], but not always [57], based on interior-point techniques)92

stabilize the original CP, most of the time resulting in the best performances93

[10,13,19,30]. Yet, the computational advantage of these methods upon SM is94

mostly seen “at the tail” of the process, where SM convergence remains slow95

whereas other methods can (if properly set) rapidly accrue “the right set of96

information to stop” [29,30]. In earlier stages the behaviour is more similar,97

despite the fact that the other methods hoard much more information than98

SM do [13]. This implies a higher cost per iteration due to the solution of the99

Master Problem (MP), that can account for a large part of the total compu-100

tational time [27,29], thereby possibly negating the advantage due to faster101

convergence. Although the cost of the MP can be decreased, e.g. by developing102
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specialized methods [24] or by reformulating it so that it can be more effec-103

tively solved by standard ones [8], the SM is inherently less expensive. The104

MP cost is particularly hurtful when solving the subproblems in parallel, since105

then the MP is the sequential bottleneck that limits the parallel speedup [15].106

Furthermore, research on SM continued to bring improvements. One was107

the re-discovery [5,6,46] of what should have been a well-known property [2],108

i.e., that SM can be endowed with ways to produce (approximately) optimal109

solutions to the convexified relaxation [48]. This puts them on par with Bun-110

dle and center-based methods, that have always been well-known for being111

able to produce primal solutions [23,26] as a by-product of dual optimization.112

Also, incremental SM have been proposed [41,50,56] which allow to exploit113

the block-separable structure of (4) to potentially speed-up computations,114

something that—albeit with a very different set of trade-offs—Bundle meth-115

ods were already well-known to be able to do [4,10,22,29,39]. Finally, fast SM116

have been proposed, starting with [52,53], which try to exploit structure in f117

to close the gap with fast gradient methods [51], that have substantially better118

convergence rates than SM but require differentiability of f . Applied to our119

setting these would require to solve the modified Lagrangian problem as120

f̄µ(λ) = λb +max{ (c− λA)u − µd(u) : u ∈ U } , (6)

with an appropriately defined strongly convex prox-function d(u) so that f̄µ121

is a smooth lower approximation of f , and the two minima can be related122

by a simple function of µ. Thus, one can apply a fast gradient to f̄µ and,123

appropriately managing µ, efficiently obtain an approximate solution to (1).124

This approach has been quite successful in several applications that require125

the solution of large-scale convex optimization problems [49], such as machine126

learning, data mining, inverse problems, and imaging (e.g., [1,17]). In turn,127

this has stimulated a vibrant research stream that is producing new results128

[11,44,7]. While the modification (6) is typically not viable in IP applications,129

primal-dual SM (PDSM) [54] can be defined that try to achieve similar re-130

sults with an oracle for the original function. Indeed, the recent universal fast131

gradient method [55] automatically switches from the fast gradient, when f132

has the required properties, to PDSM when these are missing; for this reason,133

in this paper we take PDSM as the representatives of “modern” SM. Even134

the very recent [38], which combines in a unified framework PDSM with the135

Mirror-Descent method [51], provides only a slight generalization that does136

not significantly enlarge the class of approaches that can be implemented.137

The aim of this paper is to assess how the recent developments in SM have138

influenced their computational significance for the approximate solution of LD139

of IPs. Our interest is motivated by the fact that, when used to provide lower140

bounds on (3), (1) has to be solved with the same accuracy required to the141

solution of (3), which is usually around 1e-4 relative. This value is, broadly142

speaking, not so coarse that a SM is clearly the best choice to attain it (as143

would, say, be 1e-2), but as well not so fine as to be basically hopeless to144

attain with a SM (as would, say, be 1e-6). This middle ground needs there-145

fore to be explored computationally. Towards that aim we unify most of the146
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known SM under a general scheme, starting from [21] that first unified deflec-147

tion and projection and adding a number of other practically relevant issues148

such as several different forms of deflection and stepsize formulæ, incremental149

approaches, and dynamic generation of Lagrangian variables. The aim is not150

providing theoretical contributions: some of the variants that we have tested151

do not even have a rigorous convergence proof (cf. Table 4). We have instead152

developed an object-oriented C++ code, which we plan to openly release, that153

implements the proposed general scheme in a flexible way so as to make it154

easy to add new variants. The code is tested on the solution of two different155

LD of the Fixed-Charge Multicommodity Capacitated Network Design (FC-156

MCND) problem [18]. While both relaxations exhibit the block-separable form157

(4), they differ—for the same FC-MCND instance—in |K|, n, and whether or158

not Λ = R
n. These characteristics have an impact on the optimal choice of the159

algorithmic parameters for SM, helping in better characterizing the strengths160

and weaknesses of each variant. However, the two LD ultimately compute the161

same bound, which allows for an interesting comparison between them as well162

as with other solution methods that attain the same bound, such as different163

algorithms to solve the same LD and the use of general-purpose LP solvers.164

The paper is organized as follows. In Section 2 we discuss the main char-165

acteristics of the SM presented in the literature, and we discuss a unified166

algorithmic scheme that encompasses them. Section 3 is dedicated to our ex-167

tensive numerical experiments: we describe the target FC-MCND problem and168

its two different Lagrangian relaxations, then the experimental setup, and fi-169

nally the results of the best SM variants, briefly comparing them with other170

approaches. These results, and the learned lessons, are summarized in Section171

4. The Appendix contains the details of the algorithmic parameters of the SM172

we have used and of the tuning we have performed on them.173

2 A general subgradient scheme174

In this section we discuss the basic building blocks of SM, and we describe a175

general scheme encompassing many of the variants proposed in the literature.176

2.1 Building blocks of subgradient methods177

Each SM is constructed by combining a set of basic “building blocks”. We now178

briefly discuss them, with the fine details provided in the Appendix.179

2.1.1 Stepsize rules180

A crucial aspect of any SM is the selection of the stepsize νi. One of the181

surprising properties of these algorithms is that the stepsize can be in fact182

chosen without any knowledge, either a-priori or a-posteriori, of the specific183
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function to be minimized; indeed, any choice of the stepsize satisfying the184

so-called diminishing/square summable condition185

∑∞

i=1 νi =∞ ,
∑∞

i=1 ν
2
i <∞ ,

of which νi = 1/i is the prototypical example, leads to a convergent algorithm.186

While this emphasizes the robustness of SM, these Stepsize Rules (SR) are187

most often inefficient in practice. The first efficient SR is due to Polyak [58],188

and simply reads νi = βi(fi − f∗)/‖gi‖
2, with βi ∈ (0, 2) arbitrary. This,189

however, needs to be revised, because in general di 6= gi (cf. §2.1.2), and f∗ is190

not known. This leads to the Polyak-type target value SR of the form191

νi = βi( fi − f lev
i )/‖di‖

2 (7)

where f lev
i is some approximation of f∗. Several SR of this type have been192

proposed; see, e.g., [5,6,12,20,43,60]. Except in specific cases that will be193

discussed separately, all of our SR will have this form. The nontrivial issue in194

(7) is, clearly, how f lev
i is determined. Without any external information, the195

typical approach is the target following one, where f lev
i = f rec

i − δi using the196

record value f rec
i = min{ fl : l = 1, . . . , i } and the displacement δi > 0 (which197

guarantees νi ≥ 0). The rules for choosing δi are divided into vanishing and198

nonvanishing ones according to the fact that δi ց 0 as i→∞, or not [21,42,199

59]. However, our application has the specific benefit that often a lower bound200

on f∗ is available. This is typically provided by the cost cū of some feasible201

solution of (3). In theory ū may not always be available, for instance because202

(3) is actually empty. However, in many cases feasible lower bounds can easily203

be computed early on. For the application of §3.1, for instance, it is easy to204

detect if a solution exists at all by simply solving a continuous relaxation; if not205

there is no point in solving (1), otherwise rounding provides a feasible solution206

ū which can be used as a feasible lower bound to all nodes of a B&C approach.207

Indeed, at each node the algorithm is stopped as soon as f rec
i ≤ cū(1 + η),208

where η is the required relative accuracy for the solution of (3). Hence, in our209

tests we will assume that a lower bound f ≤ f∗ is available, which provides a210

workable f lev
i without a need for target following techniques to be used. This211

allowed us to reduce the set of SR to be tested to only the following three:212

1. the Polyak rule [58], whereby βi and f lev
i do not depend on i;213

2. the ColorTV rule as implemented in the Volume algorithm [5], which is214

based on classifying the iterations as green, yellow and red according to215

the improvement ∆fi = fi−1− fi and the scalar product di−1gi (cf. §A.2);216

3. the FumeroTV rule introduced in [31], specifically designed for LDs of IPs217

and that changes both βi and f lev
i in two different phases (cf. §A.2).218

It would, however, be straightforward to test other approaches in our C++219

framework, such as the standard target following ones [21,42,59]. In fact, other220

than the above three Polyak-type rules, we have also tested the entirely dif-221

ferent SR corresponding to PDSM, as discussed next.222
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2.1.2 Deflection223

We have always used the fairly (although not entirely) general version224

di = αigi + (1− αi)di−1 (8)

of the Deflection Rule (DR) (5) to compute the next iterate, for the deflection225

parameter αi ∈ [0, 1]. The use of a convex combination is crucial in the analy-226

sis, because it ensures that di is always an approximate (conditional, cf. §2.1.3)227

subgradient of f , as recalled in §2.2. Furthermore, this allows to produce (hope-228

fully, asymptotically feasible) primal solutions u ∈ conv(U) that are useful,229

e.g., for the active-set strategy discussed in §2.1.5. Finally, since di is ulti-230

mately to be scaled by the stepsize νi, the multipliers can always be scaled231

(up or down) as to sum to one, with the scaling factor then accounted by νi.232

For our experiments we have considered the following three DR:233

1. the STSubgrad rule of the non-deflected SM [58], i.e., αi = 1;234

2. the Volume rule where αi is chosen as the (safeguarded) optimal solution235

of the one-dimensional quadratic problem [5,6] (cf. §A.3);236

3. the Primal-Dual rule of [54] for PDSM, which actually choses αi and νi237

simultaneously in order to obtain optimal worst-case estimates on the SM238

convergence rate, in both the Simple Averages (SA) and the Weighted239

Averages (WA) variants (cf. §A.3).240

Other rules have been proposed, such as the original one in [14] which used241

the largest possible αi yielding di−1gi ≥ 0 (i.e., αi = 1 if the property already242

holds). Again, testing then in our C++ framework would be straightforward.243

2.1.3 Projection244

In the constrained case, what is actually minimized is the essential objective245

fΛ(λ) = f(λ) + ı(λ), where ı(·) is the (convex) indicator function of Λ (i.e.,246

ı(λ) = 0 if λ ∈ Λ, and ı(λ) = ∞ otherwise). It is well-known that the normal247

cone Ni to Λ at λi, which is the polar of Ti, is ∂ı(λi). Projecting gi on Ti248

is then choosing some wi ∈ ∂ı(λi) in order to use gi + wi ∈ ∂fΛ(λi), instead249

of just gi, to define di. While this is quite natural, at least if Λ is easy to250

project upon, things are more complex under (8), as there are then 8 possible251

deflection schemes, corresponding to all possible combinations to projecting252

gi−1, di−1 and di. The analysis of [21] shows that theoretical convergence can253

be attained in two ways. The first is the stepsize-restricted one, limited to254

stepsize rules of the form (7), which requires the satisfaction of the safe rule255

βi ≤ αi (≤ 1) , (9)

ensuring that a step over a direction that is very far from −gi cannot be256

too large. In the deflection-restricted one, νi can rather be choosen arbitrarily257

provided that αi is kept “large enough” by258

( νi‖di−1‖
2 )( fi − f lev

i + νi‖di−1‖
2 ) ≤ αi . (10)
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If projection on Λ is too expensive, it could be substituted with partial projec-259

tions working onto the individual constraints sets [16]. This would not change260

much the algorithmic scheme presented in this paper; besides, “complex” Λ261

are comparatively rare in our preferred application.262

2.1.4 Incremental approaches263

When |K| is very large, the total cost for computing f(λi) may be large even264

if each fk is, taken individually, quite inexpensive. Motivated by training ap-265

proaches for machine learning, incremental SM have been developed where266

the “full” subgradient gi is replaced by gki of one component k ∈ K. Ideally, a267

sequence of incremental (inner) iterations performed along single-component268

subgradients could be roughly as effective as a sequence of full (outer) iter-269

ations, while the function evaluation cost is reduced by a factor of 1/|K| [9,270

56]. However, to guarantee convergence one needs to regularly compute the271

whole function f , so not all the iterates can be incremental. Besides, due to272

the risk that a step along one “rogue” component may move λi away from273

the optimum, the stepsize of incremental iterations need to be reduced with274

respect to that of full ones (cf. (14) below).275

2.1.5 Active set276

When the number n of variables (i.e., of Au = b constraints in (3)) is large,277

it may be convenient to employ an Active Set (AS) strategy whereby only a278

(small) subset of them is given a nonzero value at each iteration [26,29,30].279

This is in particular sensible if the constraints have the form Au ≤ b (=⇒280

Λ = R
n
+), because one can expect that only a fraction of them will actually be281

binding at optimality. Indeed, the AS allows to deal even with exponentially282

many constraints, provided that an efficient separator is available, which is283

known as “Relax-and-Cut” [35]. The relevant technical issue is what solution284

u ∈ U is used to perform separation, i.e., to identify violated constraints to be285

added to the AS. An obvious choice is the optimal solution ui of (4) for the286

current iterate λi, but a more sound choice is the convexified solution ūi that287

can be generated at each iteration [2,5,6,34,46] and that, under appropriate288

conditions, converges to the optimal solution of (3) (if it is a convex problem,289

of its convexified relaxation otherwise). Under (8), this is simply obtained as290

ūi = αiui + (1 − αi)ūi−1. The AS technique poses little convergence issues if291

the AS is monotonically increasing (eventually, all variables will be active);292

careful removal of variables from the AS is also possible.293

2.1.6 Summary294

All these aspects give rise to a rather large set of possible combinations, many295

of which have algorithmic parameters that have to be tuned for optimal per-296

formances. Not all of these combinations have reliable proofs of convergence,297

although several do (cf. Table 4). In practice, barring dramatic mis-settings of298
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the algorithmic parameters, all the ones we have tested showed at least some299

degree of convergence, confirming the well-known fact that SM are remarkably300

robust approaches. Despite being very many (cf. the Appendix), the combi-301

nations that we have tested do not cover all possible variants of SM. Among302

the techniques that have been left out of the experiments are space-dilation303

methods [41, §7.2], other SR like variants of the Polyak stepsize [41, (7.11)]304

or Ermoliev-like stepsizes [41, (7.6)–(7.9)], the heavy ball SM [62] popular in305

machine learning, and others. Yet, the structure of our C++ code would allow306

to easily incorporate most of these variants.307

2.2 A generic subgradient scheme308

We now present a generic scheme of SM, in order to be able to discuss the309

nontrivial interactions between its individual components.310

0. Input the algorithmic parameters, among which StepRes;

Select λ̄0 ∈ Λ; λ1 ← λ̄0, f̄0 = −∞, d0 ← 0, i← 0 and go to step 4;

1. Possibly, di−1 ← PTi
( di−1 );

if( StepRes ) then αi = Deflection(); ComputeD(); νi = Stepsize(αi);

else νi = Stepsize(); αi = Deflection(νi); ComputeD();

2. If some stopping test is satisfied, exit;

3. λi+1 ← PΛ( λ̄i − νidi );

4. OutItr = true if an outer (full) iteration is to be performed;

if( OutItr ) then evaluate fi+1 = f(λi+1) and gi+1 ∈ ∂f(λi+1);

else select k, evaluate fk(λi+1) and gi+1 ∈ ∂fk(λi+1);

5. Possibly, gi+1 ← PTi
( gi+1 ). Select λ̄i+1, set f̄i+1 accordingly;

6 i← i+ 1 and go to step 1.

311

The following general remarks discuss the common features of all the variants.312

– The new iterate is generated at Step 3 starting from the stability center313

λ̄i, which is updated at Step 5. In the original SM the update is always314

λ̄i+1 = λi+1. In the parlance of Bundle methods, this is called a Serious315

Step (SS), as opposed to Null Steps (NS) where λ̄i+1 = λ̄i. Changing λ̄i is316

sensible if this leads to a significant improvement of the function value, i.e.,317

∆fi = f̄i−fi+1 ≫ 0, otherwise a NS may be preferable. This is the strategy318

often used (cf. §A.3), although PDSM provide an entirely different rationale319

for using a stability center, without ever changing it. In our implementation320

either a SS or NS is always performed, as all SM variants we are aware of321

only employ these (whereas Bundle methods exist that can make different322

choices [3]). All this requires some quite obvious changes in some of the323

standard formulæ, such as using f̄i instead of fi in (7) and (10).324

– The ComputeD() subroutine extends (8) to di = αiḡi+(1−αi)d̄i−1, where325

ḡi and d̄i−1 are either gi and di−1 or their projection over the tangent cone326

Ti of Λ at the stability center λ̄i. Furthermore, possibly di ← PTi
( di ),327
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yielding all 8 possible deflection schemes. Yet, since Ti is convex, if both328

gi and di−1 are projected then di ∈ Ti already, thus projecting is avoided.329

– The (fixed) algorithmic parameter StepRes controls whether νi is com-330

puted after di (stepsize-restricted) or vice-versa (deflection-restricted). Since331

computing di requires αi, ComputeD() always comes after Deflection().332

However, in the deflection-restricted approach, the safe rule (9) requires333

νi in order to choose αi, and consequently Stepsize() has also to be334

called before ComputeD(). Note that, in this case, (7) would require ‖di‖335

before having computed di, which is then replaced by ‖di−1‖. The stepsize-336

restricted case is more natural for (7) in that di is computed before νi is.337

In PDSM, νi and αi are chosen simultaneously, and therefore StepRes has338

no effect. Since we do not restrict ourselves to theoretically convergent339

methods, we also allow to switch off the safe rules (9)/(10).340

– To update the AS (if any), the primal solution ūi (cf. §2.1.5) is needed,341

which depends on the choice of αi. Hence, the AS can only be updated af-342

ter that Deflection() has been called. However, if the AS changes, then343

the vectors di−1 and gi need to be updated to take into account the new344

components, which in turn may change αi. Hence, after an AS update, we345

compute again the deflection parameter αi, and in the deflection-restricted346

scheme also the stepsize; the process is repeated until the AS remains347

unchanged. Also, projection on Ti should be re-done each time new vari-348

ables are added. However, with Λ = R
n
+ the projection can be computed349

component-wise, hence only the new components of di−1, gi and/or di need350

be dealt with.351

– The linearization error of gi at λ̄i is352

σi = σi(λ̄i) = f̄i− [fi+(λ̄i−λi)gi] = σi(λ̄i−1)−∆f̄i−(λ̄i− λ̄i−1)gi , (11)

where ∆f̄i = f̄i−1 − f̄i. Note that ∆f̄i 6= ∆fi when a NS occurred at353

iteration i − 1, i.e., λ̄i = λ̄i−1 =⇒ ∆f̄i = 0. Convexity of f ensures that354

σi ≥ 0 and gi ∈ ∂σi
f(λ̄i). Furthermore, σi can be easily kept updated when355

λ̄i changes using (11), which is useful since it may play a role at different356

points in the algorithm, such as some of the DR (cf. §A.3) and the stopping357

tests (cf. next point). However, when projection is used, one rather wants358

to compute the linearization error of the projected ḡi ∈ ∂[f + ı](λ̄i). This359

is why the projection of gi is not performed at Step 1, but it occurs before360

updating λ̄i at Step 5: so that, in case of a SS, the linearization error of361

ḡi is computed. A downside of this choice is that if λ̄i changes at Step362

5, then gi may have to be projected again in the next iteration; however,363

projections (if at all required) are inexpensive in our applications.364

– An advantage of (8), which underlines all the analysis in [21], is that we can365

similarly compute and keep updated the linearization error of di w.r.t. λ̄i.366

That is, knowing that di−1 ∈ ∂ǫi−1
f(λ̄i), one has di ∈ ∂ǫif(λ̄i) with ǫi =367

ǫi(λ̄i) = αiσi(λ̄i) + (1− αi)ǫi−1(λ̄i). Also, ǫi can be cheaply updated after368

a SS with ǫi(λ̄i+1) = ǫi(λ̄i)−∆f̄i+1 − (λ̄i+1 − λ̄i)di. This means, however,369

that the same issue about projection arises here also.370
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– In the un-deflected SM, it is possible to use the inverse of ‖gi‖ in (7)371

because as soon as ‖gi‖ = 0, one has proven the optimality of λi. Since372

gi ∈ ∂σi
f(λ̄i), this also means that λ̄i is σi-optimal. With the provisions373

above, the same holds for di (or it projection); that is one can stop when374

both ‖di‖ and ǫi are “small”. Our particular implementation is375

t∗‖di‖+ ǫi ≤ ηmax(1, |f rec
i |) (12)

where t∗ is an appropriately chosen “large” scaling factor [25] and η is the376

required final relative accuracy (typically, η = 1e-4).377

– As suggested in [54] (and in [3] in a different context), one could also use378

the deflection parameter αi in a different way: not to change the gradient,379

but the point where it is evaluated. That is, for the recursive formulæ380

λ̂i = αiλi + (1− αi)λ̂i−1 , f̂i = αifi + (1− αi)f̂i−1

with (λ̂0, f̂0) = (0, 0), one has f̂i ≥ f(λ̂i) for all i, and therefore an approx-381

imation of the linearization error of di with respect to λ̂i is382

ǫ̂i = ǫ̂i(λ̂i) = αiσ̂i(λ̂i) + (1− αi)ǫ̂i−1(λ̂i)

(with ǫ̂1(λ̂1) = σ̂1(λ̂1) and σ̂i(λ̂i) = f̂i− [ fi+(λ̂i−λi)gi ] = (1−αi)[ f̂i−1−383

fi − (λ̂i−1 − λi)gi ]). Hence di ∈ ∂ǫ̂if(λ̂i) for all i, which allows to also384

employ the alternative stopping criterion385

t∗‖di‖+ ǫ̂i ≤ ηmax(1, |f rec
i |) . (13)

Testing (13) is free in PDSM, since all the terms involved have to be com-386

puted anyway (cf. §A.3). For all the other approaches we only used (12),387

for again in most cases ‖di‖ and ǫi are required anyway in the SR and/or388

the DR. However, both stopping conditions are hardly if ever satisfied in389

practice, and typically the algorithm stops at the pre-set iterations limit.390

– At Step 4, some logic is used to decide whether an outer (full) iteration391

is computed, thereby evaluating all the components, or only one compo-392

nent is evaluated. This is done in a simple pattern: we perform one outer393

iteration, followed by |K|+ 1 inner iterations, one for each of the different394

components plus one for the linear component corresponding to the RHS.395

As suggested in [9,56], we randomize the order in which the components396

are chosen, with the random permutation changed at every outer iteration.397

We experimented with different ratios between inner and outer iterations398

but the results were inconclusive, with the simple approach being in general399

the best one. Furthermore, this means that a group of |K|+ 2 consecutive400

iterations (one outer, the other inner) costs, at least as far as the subprob-401

lem solution is concerned, as much as two full iterations. This is useful402

when comparing the running time of the approaches, as discussed in §3.2.403

When the AS strategy is used we update the AS only at full iterations,404

since its cost is comparable to that of one full iteration (cf. again §3.2),405

and doing it more frequently would largely negate the advantage of having406

faster iterations. Updating the active set less frequently is possible, but it407

has not shown to be computationally convenient in our application.408
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– In the incremental SG, deflection is never used (αi = 1); there is no theo-409

retical support for deflecting the inner steps, and also how to deflect outer410

ones is unclear. For inner steps, (7) would require to compute the norm411

of gi ∈ ∂f(λi), but only gki for one k ∈ K is available. Following [50] we412

replace ‖gi‖ by the global Lipschitz constant L of f , yielding413

νi = βi

f̄p(i) − f lev
i

χ|K|L2
(14)

where p(i) the last outer step before i and χ is an arbitrary constant. In414

other words, one keeps the main part of the stepsize unchanged during415

sequences of inner iterations between two outer ones. In the same vein in416

our experiments we used βi = βp(i) and f lev
i = f lev

p(i).417

3 Numerical experiments418

We now present our extensive computational experiments on two different La-419

grangian relaxations ot the Fixed-Charge Multicommodity Capacitated Net-420

work Design (FC-MCND) problem [18], rapidly recalled below.421

3.1 Lagrangian relaxations for FC-MCND422

Given a directed network G = (N,A), we must satisfy the demands of a set
of commodities K. Each k ∈ K is an origin-destination pair (sk, tk) with an
associated demand dk > 0 that must flow between them, i.e., a deficit vector
bk = [bki ]i∈N such that bki = −dk if i = sk, b

k
i = dk if i = tk, and bki = 0

otherwise. Each arc (i, j) ∈ A can only be used, up to its mutual capacity
uij > 0, if the corresponding fixed cost fij > 0 is paid. Also, individual
capacities uk

ij are imposed for each commodity k. Finally, the routing cost ckij
has to be paid for each unit of commodity k on (i, j). FC-MCND consists
in minimizing the sum of all costs while satisfying demand requirements and
capacity constraints, its classical arc-flow formulation being

min
∑

k∈K

∑

(i,j)∈A ckijx
k
ij +

∑

(i,j)∈A fijyij (15)

∑

(j,i)∈A xk
ji −

∑

(i,j)∈A xk
ij = bki i ∈ N , k ∈ K (16)

∑

k∈K xk
ij ≤ uijyij (i, j) ∈ A (17)

xk
ij ≤ uk

ijyij (i, j) ∈ A , k ∈ K (18)

xk
ij ≥ 0 (i, j) ∈ A , k ∈ K (19)

yij ∈ {0, 1} (i, j) ∈ A (20)

For our tests we have employed two Lagrangian relaxations of FC-MCND.423

In the first one relaxes constraints (17)–(18) with multipliers λ = [α , β] =424
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[ αij , β
k
ij ](i,j)∈A , k∈K ≥ 0, yielding the objective function425

min
∑

(i,j)∈A

∑

k∈K

(

ckij+αij+βk
ij

)

xk
ij+

∑

(i,j)∈A

(

fij−αijuij−
∑

k∈K uk
ijβ

k
ij

)

yij

whose minimization subject to the remaining (16), (19)–(20) reduces to |K|426

shortest path problems, plus |A| trivial single-variable IPs. This justifies the427

name “Flow Relaxation” (FR), although what is relaxed are rather knapsack-428

type constraints. Since (16), (19) only involve continuous variables, the LD pro-429

vides the same bound as the continuous relaxation. Note that the constraints430

(18) are many; these being inequalities, this is the setting where AS techniques431

can be expected to be effective [29]. An estimate of the Lipschitz constant,432

useful for the incremental SM (cf. (14)) as well as for PDSM (cf. (25)), is433

L =
√

∑

(ij)∈A(uij)2 +
∑

k∈K

∑

(ij)∈A(u
k
ij)

2. Note that when the AS is used434

the capacities entering the above formula are only those of the constraints in435

the AS, and therefore L changes as the algorithm proceeds.436

In the second relaxation one rather dualizes the flow conservation con-437

straints (16) with multipliers λ = [λk
i ]i∈N,k∈K , yielding the objective function438

min
∑

(i,j)∈A

(
∑

k∈K(ckij + λk
i − λk

j )x
k
ij + fijyij

) [

+
∑

i∈N

∑

k∈K λk
i b

k
i

]

whose minimization subject to the remaining (17)–(20) basically decomposes439

into |A| continuous knapsack problems, one to determine the optimal value of440

each integer variable yij . This justifies the name Knapsack Relaxation (KR),441

although what is relaxed are flow conservation constraints. It can be shown442

that, due to (18), the relaxation has the integrality property: hence, as in the443

previous case the LD gives the same bound as the continuous relaxation. The444

number of multipliers is still rather large; however, these being equalities, it445

is unlikely that many of them are not going to be active at optimality, and446

therefore the AS technique is less likely to be effective. Unlike in the FR,447

there are no sign constraints on the multipliers, and therefore no projection448

is needed. The Lipschitz constant is L =
√

∑

k∈K

∑

i∈N (Lk
i )

2, where Lk
i =449

max[ | − bki +
∑

(ji)∈A uk
ji| , | − bki −

∑

(ij)∈A uk
ij | ].450

Note that, being (15)–(20) a minimization problem (unlike (3)), both LD451

are maximization problems (unlike (1)). This is easily catered in the implemen-452

tation by changing the sign of the objective function and of the subgradients.453

3.2 Experimental setup454

We have implemented all the variants of SM within a general C++ framework for455

nonsmooth optimization developed by the authors along the years. The frame-456

work is based on two pure virtual classes, NDOSolver and FiOracle, which es-457

tablish the interface between the optimization algorithm (in our case, the SM458

implemented in the class NDOSolver::Subgradient) and the oracle computing459

f (in our case, the classes FiOracle::FlowFiOrcl and FiOracle:KnapFiOrcl460

for FR and KR, respectively). Other implementations of nonsmooth approaches,461
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such as different forms of Bundle methods [3,25,29], were already available462

within the framework. The Subgradient class in turn relies on two exter-463

nal classes, Stepsize and Deflection, so that the different SR (cf. §2.1.1)464

and DR (cf. §2.1.2) can be implemented as derived classes from these. The465

PDSM case, where νi and αi are set togethery, is easily accounted for by466

having the corresponding Primal-Dual class to derive from both Stepsize467

and Deflection. This shows that while the general scheme depicts the two468

aspects as independent, there is no problem when they actually have to be469

synchronized. Moreover, the code is designed for dealing with more complex Λ470

requiring projection on knapsack-like constraints by means of the CQKnPClass471

class [28]. The code has been compiled with GNU g++ 4.4.5 (with -O3 op-472

timization option) and ran single-threaded on an Opteron 6174 processor (12473

cores, 2.2 GHz) with with 32 GB of RAM, under a i686 GNU/Linux operating474

system. To solve the FR, we have used solvers from the MCFClass project,475

available at http://www.di.unipi.it/optimize/Software/MCF.html, while476

solving the KR basically just required a sort and was coded directly. When477

comparing SM with other approaches we used Cplex 12.5.0.1 to solve LPs.478

The numerical experiments have been performed on 80 randomly generated479

instances, arranged in 20 groups of 4 instances each. The first 8 groups are of480

small size. In the remaining 12 groups the number of nodes and arcs are chosen481

as (20, 300), (30, 600), or (50, 1200), and for each of these |K| is chosen in {100,482

200, 400, 800} (cf. Table 1). We refer to [29] for more details; the instances can483

be downloaded from http://www.di.unipi.it/optimize/Data/MMCF.html.484

A nontrivial issue about our experiments is how to compare the perfor-485

mances of the different SM. Our choice has been to record the running time486

and the obtained lower bound of each variant with different iteration count487

limits. For all non-incremental SM, we (somewhat arbitrarily) choose that488

to be 100, 200, 500, 1000, 2000, 5000, and 10000 iterations. For incremen-489

tal SM, whose inner iterations are faster, the iteration counts of 1000, 2000,490

5000, 10000, 20000, 50000, 100000, 200000, 500000 and 1000000 were used491

instead. We then charted the time required to reach a certain gap with the492

(known) optimal value. An issue with this approach is that computing the493

f value in instances of larger size is more costly, making it difficult to com-494

pute aggregated results. Fortunately, for our instances a simple scaling was495

sufficient. Indeed, we observed that the charts for the same SM variant and496

different sizes were remarkably similar, and they became almost identical by497

expressing them in normalized running time, i.e., dividing the running time by498

|A| · |K|. This is reasonable because in both relaxations the computation of f499

is O(|A| · |K|) up to logarithmic factors (|K| shortest paths with non-negative500

arc costs, hence O(|A| log(|N |)) each, vs. |A| continuous knapsack problems,501

hence O(|K| log(|K|)) each), and, given the limited range of |A| and |K|, any502

logarithmic factor is almost constant. All the rest of the algorithm has a linear503

cost in the number of variables n, which is (|A|+1)·|K| for the FR and |N |·|K|504

for the KR, but |A| is proportional to |N | as the graphs are sparse. With the505

AS strategy n is actually (much) smaller, but identification of new violated506

constraints is again O(|A| · |K|). All in all, the iteration cost is dominated by507
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factors of roughly O(|A| · |K|), explaining why the running time scales pretty508

much linearly in that quantity. It is also remarkable that the convergence speed509

proved to be very similar as n varied by orders of magnitude (from 9040 to510

960000 for the FR and from 800 to 40000 for the KR). This is not surpris-511

ing, since the theoretical efficiency estimates of SM are typically independent512

on n; our experiments confirm that the practical behaviour is in fact pretty513

much invariant with n, hence that SM can be especially promising for very514

large-scale problems. This allowed us to compare the different SM variants515

by comparing their convergence graphs aggregated across all the 80 instances516

of our test set. Note that incremental variants actually are randomized al-517

gorithms due to the selection of the random reshuffle of the components at518

each full iteration; however, since each graph aggregates results among many519

instances, it is not necessary to repeat individual runs several times. All this520

has been instrumental in allowing us to perform the extensive tuning phase,521

detailed in §A.3, which led to the identification of the best results described522

in the next paragraph.523

A final relevant aspect of our computational tests concerns the fact that the524

stepsize rules (7)/(10) require some (lower) approximation f to f∗. In order to525

avoid target-level approaches we have worked with a fixed f . However, in order526

to cater for the different cases that would occur when using these techniques527

in IP, we have used two different configurations: in one f = f∗, and in the528

other f = f∗− 0.1|f∗|. We denote the latter by “10%f∗”; it corresponds to the529

case where the best known solution to (3) is 10% more costly than the best530

possible lower bound (somewhat on the “bad” side, but unfortunately not too531

unlikely), so that even if f∗ were reached, the corresponding node in the B&C532

tree could not be fathomed. The case f = f∗ is instead the one where the node533

can be fathomed by the bound, if the latter is computed accurately enough.534

3.3 Results for the FR535

We now report the numerical results of SM on the FR, using the best param-536

eters detailed in the §A.3. Each variant is represented in Figures 1 and 2 by537

means of a graph, with normalized total time (cf. §3.2) on the horizontal axis538

and average gap on the vertical one, both in logarithmic scale. We separately539

report results for all combinations of the three variants of SR and the two540

variants of DR (STSubgrad “(s)” and Volume “(v)”). We also report all SR541

with the incremental approach “(i)” (with no deflection, cf. §2.2), and the two542

SA and WA variants of PDSM. For clarity, we divide both Figures in four543

different quadrants, with the same scale on both axes to allow for comparison.544

The upper two graphs (part (a)) depict results when the AS strategy is used,545

and the lower two ones (part (b)) when it is not. The leftmost graphs depict546

the approaches when deflection is used (Volume and Primal-Dual) and the547

rightmost ones these where it is not (STSubgrad and incremental). Figure 1548

reports the results with f = f∗, while Figure 2 those with f = 10%f∗; since549

PDSM do not use f , the corresponding curves are the same in the two Fig-550
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ures. We did not report the performances of incremental approaches without551

the AS strategy because it was exceedingly slow. This is not surprising, be-552

cause in the FR just forming the whole subgradient has a cost comparable to553

that of solving all the subproblems, thereby negating any advantage in having554

incremental iterations.555
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Fig. 1 Results for the FR with lower bound f∗ (normalized time vs. average gap)

The following remarks can be made about the results.556

– Deflected approaches are much more efficient than non-deflected ones, as557

can be seen by comparing the same SR (left vs. right graphs). This requires558

properly choosing how to deflect and which vectors among di, di−1 and gi559

is better to project. However, as discussed in §A.4, the different forms560

of projection have a limited impact on the performances, as long as any561

projection is performed, so deflection is most definitely the way to go.562

– Incremental approaches are not competitive, which is likely due to the com-563

bination of two factors. On the one hand, they are not deflected (cf. above).564

On the other hand n is large, so that just forming gki requires much more565

time than computing fk. Thus, each iteration has a large “fixed cost”,566

independent on how many components are computed, besides that of com-567

puting f . While the AS strategy manages to decrease this cost, it is still not568
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Fig. 2 Results for the FR with lower bound 10%f∗ (normalized time vs. average gap)

enough to make the incremental approach competitive. For this to happen569

n should be “small” w.r.t. the cost of computing each fk, although if the570

latter is very large then other approaches may be preferable, cf. §3.5.571

– PDSM are most often not competitive, although their convergence is very572

stable. The WA is typically better than the SA, as the theory suggests.573

PDSM can still be considered attractive in view of the very limited effort574

required to tune them; yet, finely tuned SM with other DR and SR can be575

significantly more effective. This may be partly due to the fact that PDSM576

do not use any available information about f∗, while (7)/(10) do. We also577

experimented with providing PDSM other information about the optimal578

solution to (1) (cf. §A.3), but with no success.579

– The AS technique is in general beneficial: SM are somewhat faster in per-580

forming the same number of iterations (the topmost graphs in both Figures581

terminate more on the left than the bottom ones), while the convergence582

rate is usually similar. There are, however, exceptions. For instance, in583

“(v)” SM the AS can actually improve convergence speed (especially in584

Figure 2), while the converse happens for PDSM. This is not surprising585

since, to the best of our knowledge, AS techniques in the PSDM have never586

been analyzed; this may suggest that some specific theoretical development587
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may be useful in practice.588

3.4 Results for the KR589

The results of the KR are summarized in Figure 3, with largely the same590

notation as for the FR case. However, in this case the AS technique is not591

used, so only one figure is needed: part (a) is for f = f∗, while part (b) is for592

f = 10%f∗. Since PDSM do not use f , the corresponding curves are identical.593
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Fig. 3 Results for the KR (normalized time vs. average gap)

The following remarks can be made about the results:594

– By and large, the same trends seen in the FR case show up here in terms595

of strong benefits of deflection and no benefits of incremental approaches.596

– PDSM are even less competitive. This may be due to the fact that they597

have been developed under some sort of compactness assumption on Λ598

(cf. (21)), and actually use its (estimated) diameter in setting the algorith-599

mic parameters. In the KR, not only the feasible set is unbounded (this600

was true for the FR as well); since the relaxed constraints (16) are rank-601

deficient, the set of optimal solutions is also unbounded. This seems to602
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significantly affect the practical behaviour of PDSM.603

– Figure 3(a) for f = f∗ shows a peculiar behaviour of the FumeroTV rule:604

while it is the most efficient as it runs, it stops far before the maximal605

iteration limit because νi become too small, thereby getting a far worse606

final gap than the other variants (although quickly). This seems to be an607

issue with the rule, and no choice of the parameters we tested was able to608

avoid it. Interestingly, this only happens with deflection: it does not with609

STSubgrad, nor with f = 10%f∗. It may be possible that some settings610

that we have not tested may avoid this behaviour, but we elected to keep611

this as a cautionary tale about the fact that heuristic rules, while possibly612

working well in many cases, may fail sometimes.613

– The convergence graph of ColorTV is noticeably shorter than the others614

(save for FumeroTV), as it often attains the required gap of 1e-4 against615

the known lower bound f∗, at which point it is stopped. This can actually616

happen in the IP application, since f∗ < cū may happen (the B&C node617

can be fathomed by the bound), which is particularly useful because the618

standard stopping rules (12)/(13) are scarcely effective.619

– In general, the KR provides better bounds more quickly than the FR,620

confirming previous experiences [19].621

3.5 Comparison with Cplex and Bundle methods622

We now compare the best SM with two other approaches which provide the623

very same bound: solving the LP relaxation of (15)–(20) with a general-624

purpose LP solver, and solving the LD of the FR and the KR with a Bundle625

method. The experiments were performed as follows:626

– For Cplex, an optimality gap of 1e-6 has been set, and always attained.627

Tuning also has been performed by testing all of the available LP algo-628

rithms and selecteing the dual simplex one, which provided the best per-629

formances; it was, however, almost always the algorithm chosen by the630

“automatic” setting. Also, the (many) constraints (18) have been intro-631

duced in the formulation as lazy constraints—the equivalent of using the632

AS strategy in SM—which was crucial for performances (cf. [29, Table 4]).633

We experimented with passing f∗ to Cplex; since a dual simplex method634

is used, this might have allowed Cplex to stop as soon as a(n approxi-635

mately) dual solution is achieved. However, this turned out to be of no636

use, precisely due to lazy constraints: Cplex separates them only when a637

feasible primal solution is attained, which is only at the end of the dual638

simplex. Not using the lazy constraints allowed Cplex to stop sooner when639

the information was provided, but it resulted in a hugely increased running640

time. By contrast, the other algorithms use infeasible primal solutions to641

do separation, and therefore do not suffer from this issue.642

– For the Bundle method [25] a gap of 1e-4 was required, although, unlike643

with SM, requiring a higher accuracy may only come at the cost of a644

comparatively minor increase in running times [29, Table 3 and Table 6].645
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The Bundle algorithm was also provided with f∗, which it uses both to646

stop as soon as a solution with accuracy 1e-4 is attained and to improve647

the cutting plane model it uses to drive the search. We used two different648

variants of the Bundle method for the two LD. For the FR we used the649

fully disaggregated version with “easy component” and linear stabilization,650

denoted by DE-L in the table, that has been proven in [29]—after extensive651

tuning—to be the best option. It requires a costly master problem, which652

takes by far the largest fraction of running time, but it attains the desired653

solution in a very small number of iterations. For the KR, after extensive654

tuning (not discussed here in details) we found the best Bundle variant655

to rather be the one that uses a fully aggregated master problem with656

quadratic stabilization (denoted by AK-Q in the table), where the master657

problem is solved with the specialized QP solver of [24].658

– For SM, we report results corresponding to the best options identified in659

the previous phase. In particular, for the FR we have used Volume as DR660

and Polyak as SR (denoted by FVP in the table), with the AS strategy,661

while for the KR we have used Volume as DR, but ColorTV as the SR662

(denoted by KVC in the table). For both algorithms, we have set f = f∗,663

and required a gap of 1e-4. We also set an iteration limit of 5000, as it664

seemed to represent the best compromise between accuracy of the achieved665

solution and running time. FVP invariably stopped at the iteration limit, so666

we only report the final gap. KVC instead often—but not always—reached667

1e-4 accuracy before the iteration limit, thus we report both the number668

of iterations and the final gap.669

dimension Cplex FVP KVC DE-L AK-Q
# |N | |A| |K| time time gap time iter gap time iter time iter
1 20 226 40 0.05 1.76 1e-3 0.12 881 9e-5 0.09 12 0.25 1233
2 20 230 200 17.71 11.07 2e-3 5.39 4738 1e-4 16.34 30 10.44 8084
3 20 292 40 0.05 2.17 1e-3 0.10 602 1e-4 0.09 10 0.12 480
4 20 292 200 16.42 14.12 1e-3 6.08 4604 1e-4 12.54 28 8.50 5225
5 30 519 100 9.48 16.53 2e-3 3.15 3709 2e-4 10.05 34 8.05 7073
6 30 519 400 191.30 87.07 1e-3 20.62 4631 1e-4 80.28 25 57.42 6713
7 30 684 100 7.04 24.85 2e-3 3.27 3141 1e-4 10.90 53 5.03 3499
8 30 692 400 450.36 125.89 1e-3 26.16 4903 2e-4 188.33 32 82.67 9830
9 20 300 100 5.73 10.21 3e-3 2.52 5000 2e-4 7.36 35 3.62 5181

10 20 300 200 26.62 24.29 1e-3 6.65 5000 2e-4 19.96 30 10.10 6083
11 20 300 400 42.95 46.54 1e-3 17.45 4051 1e-4 16.77 26 38.18 5920
12 20 300 800 148.35 107.66 1e-3 25.42 3538 1e-4 38.32 23 33.76 3232
13 30 600 100 18.68 23.78 1e-3 6.13 4708 2e-4 7.93 42 11.16 6496
14 30 600 200 50.89 44.94 9e-4 14.09 3368 1e-4 8.93 34 25.59 3896
15 30 600 400 104.10 101.11 8e-4 20.98 3208 1e-4 11.51 22 30.55 3345
16 30 600 800 732.87 199.27 9e-4 52.98 3093 1e-4 61.28 25 84.30 3761
17 50 1200 100 51.91 56.21 1e-3 10.74 3580 1e-4 3.69 48 33.20 8985
18 50 1200 200 224.47 101.93 1e-3 30.42 4666 1e-4 34.27 43 59.89 7536
19 50 1200 400 833.57 227.48 9e-4 79.22 4499 1e-4 52.60 34 154.41 7630
20 50 1200 800 3749.56 468.26 8e-4 180.41 4900 1e-4 76.22 25 168.72 4174

Table 1 Comparison of the best SM with Cplex and Bundle methods

The results are reported in Table 1, which shows some interesting trends.670
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While for small-scale instances direct use of an LP solver is the best option, de-671

composition approaches become more and more competitive as the size grows.672

Often the Bundle method using “complex” master problems (DE-L) is the best673

option; the approach also has the advantage that one can get very high-quality674

dual solutions, and the corresponding accurate optimal primal solutions, with675

a comparatively minor increase in effort [29]. However, as the size increases,676

the master problem cost becomes very high; thus, methods that use cheaper677

master problems can be competitive even if they require many more iterations.678

In particular, with only one exception (group 20), KVC is faster than AK-Q,679

while obtaining a roughly comparable gap; it is fair to remark, however, that680

KVC did not always attain the required 1e-4 accuracy, although it was always681

pretty close, whereas AK-Q always did. Yet, this confirms previous experience682

[13] that aggregated Bundle methods do not always attain significantly higher683

convergence rates than well-tuned SM, despite collecting far more information684

and paying the corresponding price in terms of master problem time. Inter-685

estingly, in several cases (groups 2, 4–8, 10 and 12), KVC obtains comparable686

gaps than DE-L in less time, often significantly so. These results requiring ac-687

curate selection of the many parameters, and partly hinge on the availability688

of (at least approximate) bounds on the optimal value of the problem; hence,689

standard techniques like the use of general-purpose solvers, or even more stable690

nondifferentiable optimization approaches like Bundle methods, can be more691

appropriate if these conditions are not met. However, our study confirms that692

appropriately tuned SM can be competitive for efficiently computing (not too693

tight) bounds for hard, large-scale IPs.694

4 Conclusion695

We have computationally analysed a large class of Subgradient Methods, cov-696

ering many of the ones proposed in the literature so far, for the solution of697

large-scale Lagrangian Duals of hard Integer Programs. The specific features698

of this application are that the number of variables is large, the computation699

of the function decomposes into many independent problems, and only a rel-700

atively poor accuracy is required. Our results show that, although the total701

number of variants (comprised the possible settings for the numerical algorith-702

mic parameters) is rather large, it is not exceedingly difficult to find settings703

that work reasonably well across a large family of instances. Provided that704

the appropriate tuning is made, SM perform roughly as expected: while their705

global rate of convergence is far from being appealing, their very low cost per706

iteration—in particular, outside of the function computation—can make up707

for it as long as a relatively coarse bound is required.708

Our interest in performing these experiments was partly about understand-709

ing the computational significance of the theory developed in [21]. In this710

sense, we can report that the ideas developed therein actually seem to have711

an impact: deflecting is indeed crucial for good performances of a SM, and712

deflection and projection do work better together (cf. Table 2). Interestingly,713



22 Antonio Frangioni et al.

deflection-restricted approaches, developed for proving theoretical convergence714

of SM, actually seem to work well in practice in some cases (cf. Table 3). What715

mostly motivated our interest, however, was the hope that two relatively re-716

cent additions to the arsenal of SM, namely incremental and primal-dual ap-717

proaches, could significantly improve the performances with respect to more718

“traditional” ones. Limited to the very specific instances and problems we have719

tested, and against our expectations, this proved less successful. In hindsight,720

this might have been expected for incremental methods: the size of the vari-721

ables space is large, while the subproblems are of very low complexity, which722

means that the “fixed cost” for each iteration (even if AS techniques are ap-723

plied) largely makes partial computation of f irrelevant. There very likely are724

IPs where these trade-offs are different, and therefore incremental methods can725

be competitive, especially if theoretical developments—e.g., along the lines of726

[63]—would allow incorporating deflection techniques. As far as PDSM are727

concerned, the results are promising in that they show a very consistent be-728

haviour with a much lower need of tuning parameters. Still, carefully tuned729

version of traditional SM can significantly outperform them in most scenarios.730

Our results seem to suggest that PDSM may be improved in practice by:731

– exploiting information about the optimal value of the problem;732

– adapting the approach to cope with an active-set strategy;733

– adapting the theory to cope with cases where the feasible set, and even734

worse the optimal set, is unbounded.735

We hope that our analysis will stimulate further research along these lines.736

A different line of research concerns the actual use of SM within enumer-737

ative approaches for the IP. In such a framework, trading faster bound com-738

putation for lower bound quality can indeed improve the overall efficiency of739

the approach, but only if the right trade-offs are made. Furthermore, solution740

of the LD is required not once, but in each B&C node; hence, reoptimization741

techniques, whereby the information generated at the parent node is exploited742

to improve the solution time at its descendants, become crucial. Which SM743

are more efficient in this context, in terms of the global running time of the744

enumerative algorithm rather than of any single bound computation, is an745

open question that we intend to pursue in the future.746
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A Appendix759

We now describe all the details of the SM that we have tested, together with the results of the760

tuning phase. We remark that for some parameters it is nontrivial even to set a reasonable761

ranges for the values. Our approach has been to select the initial range heuristically, and762

then test it: if the best value consistently ended up being at one extreme, this was taken as763

indication that the interval should be enlarged accordingly. This hinges on the assumption764

that the behaviour of the algorithm is somewhat “monotonic” in the parameters; while this765

is not necessarily true, for the vast majority of parameters a “monotonic” behaviour has766

been verified experimentally, in that we almost never found the case where different settings767

“far apart” provided better performances than these “in the middle.”768

A.1 General parameters of SM769

The following parameters are common to all variants of SM we tested, basically irrespective770

of the specific rules for choosing the stepsize and the deflection.771

– We denote by pr ⊆ { gi , di−1 , di } the subset of vectors that are projected on the772

tangent cone Ti of Λ at λ̄i; in all our tests, pr does not depend on the iteration. As773

already remarked, pr = { gi , di−1 , di } makes no sense as Ti is convex. Furthermore,774

when no deflection is done di = gi and therefore only pr = { gi } and pr = ∅ make sense.775

– Regarding the order in which the stepsize and the deflection are chosen, we denote by776

sg ∈ {drs , dr0 , srs , sr0 } the four possible schemes, where “dr” and “sr” refer to the777

deflection-restricted and stepsize-restricted approach, respectively, while “s” and “0”778

refer to using or not the safe rule ((10) and (9), respectively). Of course, drs and dr0779

only apply if deflection is performed.780

– We denote by χ the parameter used to adjust the Lipschitz constant L in the incremental781

case, cf. (14), for which we tested the values χ = 1e-v for v ∈ {0, . . . , 8}.782

– For the AS, one crucial decision is how often separation is performed: doing it less often783

avoids some computations, but at the risk of ignoring possibly relevant information for784

too long. We performed separation after the fixed number s1 ∈ {0, 1} of iterations, i.e.,785

either not using the AS at all or separating every iteration. Initial tests showed that786

larger values of sl were not effective.787

A.2 Parameters of the SR788

We now examine in details the parameters of the three SR. Since all of them have the form789

(7), we are looking at different ways for determining βi and f lev
i .790

Polyak In this SR βi and f lev
i are kept fixed at all iterations. Here, we exploit the fact791

that in our application we know have “target value” f and simply test the two cases f lev ∈792

{f∗, 10%f∗}. As for the other parameter, we tested β ∈ { 0.01 , 0.1 , 1 , 1.5 , 1.99 }.793

ColorTV This SR is based on the improvement ∆f = f̄i−1−fi of f and the scalar product794

digi to estimate “how successful a step has been.” Note, however, that in deflection-restricted795

schemes (i.e., drs and dr0) di is not available and we use di−1gi instead. Iteration i is marked796

as green if digi > ρ and ∆f ≥ ρ max{|frec
i |, 1}, as yellow if digi < ρ and ∆f ≥ 0, and797

as red otherwise, where ρ > 0 is a tolerance. Intuitively, green is a “good” step possibly798

indicating that a larger νi may have been preferable, whereas red is a “bad” one suggesting799

that νi is too large. Given three parameters cg, cy and cr, and denoting by ng, ny and nr800

the number of consecutive green, yellow and red iterations, respectively, βi is updated as:801

1. if ng ≥ cg then set βi = min{ 2 , 2βi−1 };802

2. if ny ≥ cy then set βi = min{ 2 , 1.1βi−1 };803
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3. if nr ≥ cr then then set βi = max{ 5e-4 , 0.67βi−1 };804

4. if none of the above cases occur, then set βi = βi−1.805

One important parameter is therefore the arbitrarily fixed value β0. Also, the SR includes a806

simple target-following scheme whereby if fi ≤ 1.05f lev
i then f lev

i = fi−0.05f lev
i (note that807

this never happens for f lev = 10%f∗). For this SR we kept ρ = 1e-6 fixed and we tested all808

combinations of β0 ∈ { 0.01 , 0.1 , 1 , 1.5 , 1.99 }, cg ∈ { 1 , 10 , 50 }, cy ∈ { 50 , 100 , 400 },809

and cr ∈ { 10 , 20 , 50 }.810

FumeroTV This SR has a complex management of f lev
i and βi, motivated by experimental811

considerations [31], that is subdivided into two distinct phases. The switch between the two812

is an iteration counter r, that is increased each time there is no improvement in the function813

value. This counter is used to define the exponential function σ(r) = e−0.6933(r/r1)
3.26

,814

where r1 is a parameter; note that σ(r1) ≈ 1/2, which is how the two apparently weird815

numerical parameters have been selected. The function σ, which is decreasing in r, is used816

in two ways. The first is to determine the maximum number of non-improving steps, which817

is the smallest integer r2 such that σ∞ ≥ σ(r2), where the threshold σ∞ > 0 is another818

parameter: given r1 and σ∞, r2 can be obtained with a simple closed formula. The second819

is to construct at each iteration the value of f lev
i as a convex combination of the known820

global lower bound f (which, not incidentally, this algorithm specifically tailored for IP821

is the only one to explicitly use) and the current record value as f lev
i = σ(r)f + (1 −822

σ(r))frec
i . In the first phase, when r varies, the threshold varies as well: as σ(r) decreases823

when r grows, f lev
i is kept closer and closer to frec

i as the algorithm proceeds. In the second824

phase (r ≥ r2), where r is no longer updated, σ(r) = σ∞. The procedure for updating825

r and βi uses four algorithmic parameters: a tolerance δ > 0, two integer numbers η1826

and η2 ≥ 1, and the initial value β0 ∈ (0, 2). The procedure is divided in two phases,827

according to the fact that the iteration counter r (initialized to 0) is smaller or larger than828

the threshold r2. Similarly to ColorTV, the rule keeps a record value f̄i (similar, but not829

necessarily identical, to frec
i ) and declares a “good” step whenever fi ≤ f̄i − δmax{|f̄i|, 1},830

in which case f̄ is updated to fi. In either phase, the number of consecutive “non-good”831

steps is counted. In the first phase, after η̄2 such steps r is increased by one, and βi is832

updated as βi = βi−1/(2βi−1 + 1). In the second phase r is no longer updated: after833

every “good” step βi is doubled, whereas after η̄1 “non good” steps βi is halved. In the834

tuning phase we tested the following values for the parameters: σ∞ ∈ { 1e-4, 1e-3, 1e-2835

}, δ = 1e-6, r1 ∈ { 10 , 50 , 100 , 150 , 200 , 250 , 300 , 350 }, β0 ∈ { 0.01 , 0.1 , 1 , 1.5 , 1.99 },836

η1 ∈ { 10 , 50 , 100 , 150 , 200 , 250 , 300 , 350 }, η2 ∈ { 10 , 50 , 100 , 150 , 200 }.837

A.3 Parameters of the DR838

We now describe in details the two “complex” DR that we have tested (STSubgrad, where839

αi = 1 =⇒ di = gi and λ̄i+1 = λi+1 for all i, hardly needs any comment). Note that the840

selection of λ̄i+1 is also done by the Deflection() object.841

Primal-Dual The PDSM is based on a sophisticated convergence analysis aimed at ob-842

taining optimal a-priori complexity estimates [54]. A basic assumption of PDSM is that Λ843

is endowed with a prox-function d(λ), and that one solves the modified form of (1)844

min{ f(λ) : d(λ) ≤ D , λ ∈ Λ } (21)

restricted upon a compact subset of the feasible region, where D ≥ 0 is a parameter. D is845

never directly used in the algorithm, except to optimally tune its parameters; hence, (21)846

can always be considered if f has a minimum λ∗. In particular, we take d(λ) = ‖λ−λ0‖2/2,847

in which case D = ‖λ∗ − λ0‖2/2. In general D is unknown; however, the parameter “t∗” in848

the stopping formulæ (12)/(13) is somehow related. Roughly speaking, t∗ estimates how far849

at most one can move along a subgradient gi ∈ ∂f(λi) when λi is an approximately optimal850

solution. The parameter, that it used in the same way by Bundle methods, is independent851

from the specific solution algorithm and has been individually tuned (which is simple enough,852

ex-post); hence, D = (t∗)2L is a possible estimate. Yet, t∗ is supposed to measure ‖λ∗ −λi‖853

for a “good” λi, whereas D requires the initial λ0, which typically is not “good”: hence,854
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we introduced a further scaling factor F > 0, i.e., took γ = (F
√
L)/(t∗

√
2) for SA and855

γ = F/(t∗
√
2L) for WA (cf. (25)), and we experimentally tuned F . In general one would856

expect F > 1, and the results confirm this; however, to be on the safe side we tested all the857

values F ∈ { 1e-4, 1e-3, 1e-2,1e-1, 1, 1e1, 1e2, 1e3, 1e4 }. As suggested by one Referee858

we also tested using D = ‖λ∗ − λ0‖2/2, with λ∗ obtained by some previous optimization.859

The results clearly showed that the “exact” estimate of D not always translated in the best860

performances; in particular, for the FR the results were always consistently worse, whereas861

for the KR the results were much worse for WA, and completely comparable (but not any862

better) for SA. This is why in the end we reported results with the tuned value of F .863

For the rest, PDSM basically have no tunable parameters. It has to be remarked, how-864

ever, that PDSM are not, on the outset, based on a simple recurrence of the form (5); rather,865

given two sequences of weights {υi} and {ωi}, the next iterate is obtained as866

λi+1 = argmin
{

λ
∑i

k=1 υkgk + ωid(λ) : λ ∈ Λ
}

. (22)

Yet, when Λ = R
n (22) readily reduces to (5), as the following Lemma shows.867

Lemma 1 Assume Λ = R
n, select d(λ) = ‖λ−λ0‖2/2, fix λi = λ0 for all i ≥ 0 in (5). By868

defining ∆i =
∑i

k=1 υk, the following DR and SR869

αi = υi/∆i (∈ [0, 1]) and νi = ∆i/ωi (23)

are such that λi+1 produced by (22) is the same produced by (5) and (8).870

Proof Under the assumptions, (22) is a strictly convex unconstrained quadratic problem,871

whose optimal solution is immediately available by the closed formula872

λi+1 = λ0 − (1/ωi)
∑i

k=1 υkgk . (24)

This clearly is (5) under the SR in (23) provided that one shows that the DR in (23) produces873

di = (
∑i

k=1 υkgk)/∆i .

This is indeed easy to show by induction. For i = 1 one immediately obtains d1 = g1. For874

the inductive case, one just has to note that875

1− υi+1

∆i+1
=

∆i+1 − υi+1

∆i+1
=

∆i

∆i+1

to obtain876

di+1 = αi+1gi+1 + (1− αi+1)di =
υi+1

∆i+1
gi+1 +

∆i

∆i+1

∑i
k=1 υkgk

∆i
=

1

∆i+1

i+1
∑

k=1

υkgk. ⊓⊔

Interestingly, the same happens if simple sign constraints λ ≥ 0 are present, which is what877

we actually have whenever Λ 6= R
n.878

Lemma 2 If Λ = R
n
+, the same conclusion as in Lemma 1 hold after PΛ(λi+1).879

Proof It is easy to see that the optimal solution of (22) with Λ = R
n
+ is equal to that with

Λ = R
n, i.e. (24), projected over R

n
+. ⊓⊔

Therefore, implementing the DR and the SR as in (23), and never updating λ̄i = λ0, allow880

us to fit PDSM in our general scheme. To choose υi and ωi we follow the suggestions in881

[54]: the SA approach corresponds to υi = 1, and the WA one to υi = 1/‖gi‖. We then set882

ωi = γω̂i, where γ > 0 is a constant, and ω̂0 = ω̂1 = 1, ω̂i = ω̂i−1 + 1/ω̂i−1 for i ≥ 2,883

which implies ω̂i+1 =
∑i

k=0 1/ω̂k. The analysis in [54] suggests settings for γ that provide884

the best possible theoretical convergence, i.e.,885

γ = L/
√
2D and γ = 1/

√
2D , (25)

for the SA and WA, respectively, L being the Lipschitz constant of f .886
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Volume In this DR, αi is obtained as the optimal solution of a univariate quadratic prob-887

lem. As suggested in [5], and somewhat differently from the original [6], we use exactly the888

“poorman’s form” of the master problem of the proximal Bundle method889

min
{

νi−1 ‖αgi + (1− α)di−1‖2 /2 + ασi(λ̄i) + (1− α)ǫi−1(λ̄i) : α ∈ [0, 1]
}

(26)

where the linearization errors σi(λ̄i) and ǫi−1(λ̄i) have been discussed in details in §2.2.890

Note that we use the stepsize νi−1 of the previous iteration as stability weight, since that891

term corresponds to the stepsize that one would do along the dual optimal solution in a892

Bundle method [3,5,25]. It may be worth remarking that the dual of (26)893

min
{

max{ gid− σi(λ̄i) , di−1d− ǫi−1(λ̄i) }+ ‖d‖2/(2νi−1)
}

, (27)

where d = λ−λ̄i, is closely tied to (22) in PDSM. The difference is that (27) uses two (approx-894

imate) subgradients, gi and di, whereas in (22) one uses only one (approximate) subgradient895

obtained as weighted average of the ones generated at previous iterations. Problem (26) is896

inexpensive, because without the constraint α ∈ [0, 1] it has the closed-form solution897

α∗

i =
ǫi−1(λ̄i)− σi(λ̄i)− νi−1di−1(gi − di−1)

νi−1‖gi − di−1‖2
,

and thus one can obtain its optimal solution by simply projecting α∗

i over [0, 1]. However,898

as suggested in [5,6] we rather chose αi in the more safeguarded way899

αi =

∣

∣

∣

∣

∣

∣

αi−1/10 if α∗

i ≤ 1e − 8

min{τi , 1.0} if α∗

i ≥ 1
α∗

i otherwise

where τi is initialized to τ0, and each τp iterations is decreased multiplying it by τf <900

1, while ensuring that it remains larger than τmin. The choice of the stability center is901

also dictated by a parameter m > 0 akin that used in Bundle methods: if f̄i − fi+1 ≥902

mmax{1, |fref
i |} a Serious Step occurs and λ̄i+1 = λi+1, otherwise a Null Step takes place903

and λ̄i+1 = λ̄i. For the tuning phase we have searched all the combinations of the following904

values for the above parameters: τ0 ∈ { 0.01 , 0.1 , 1 , 10 }, τp ∈ { 10 , 50 , 100 , 200 , 500 },905

τf ∈ { 0.1 , 0.4 , 0.8 , 0.9 , 0.99 }, τmin ∈ { 1e-4, 1e-5 }, m ∈ { 0.01 , 0.1 }.906

A.4 Detailed results of the tuning phase907

The tuning phase required a substantial computational work, and a nontrivial analysis of908

the results. As discussed in §3.2, each SM configuration gave rise to an aggregated conver-909

gence graph. To select the best configurations, the graphs were visually inspected, and the910

ones corresponding to a better overall convergence rates were selected. This usually was the911

configuration providing the best final gap for all instances. Occasionally, other configura-912

tions gave better results than the chosen one in the earlier stages of the algorithm on some913

subsets of the instances; usually the advantage was marginal at best, and only on a fraction914

of the cases, while the disadvantage in terms of final result was pronounced. In general it915

has always been possible to find “robust” settings that provided the best (or close so) gap916

at termination, but were not too far from the best gaps even in all the other stages. Further-917

more, although the total number of possible combinations was rather large, it turned out918

that only a relatively small set of parameters had a significant impact on the performances,919

and in most of the cases their effect was almost orthogonal to each other. This allowed us920

to effectively single out “robust” configurations for our test sets; for several of the param-921

eters, the “optimal” choice has been unique across all instances, which may provide useful922

indications even for different problems.923

For the sake of clarity and conciseness, in Tables 2 and 3, we report the chosen values924

of the parameters for FR and KR, respectively, briefly remarking about the effect of each925

parameter and their relationships. The behaviour of SM was pretty similar in the two cases926

f = f∗ and f = 10%f∗; hence, the tables report the values for f = f∗, indicating in “[]” these927

for f = 10%f∗ if they happen to be different. The tables focus on the combinations between928

the three SR and the two DR, plus the incremental case; the parameters of Primal-Dual929

variant are presented separately since the SR is combined with the DR.930
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Results for the FR. The results for FR are summarized in Table 2, except for those931

settings that are constantly optimal. In particular, STSubgrad and Incremental have better932

performances with pr = {gi}, irrespective of the SR. For Volume, instead, the optimal setting933

of pr does depend on the SR, although pr = {di} and pr = {di−1} were hardly different. All934

the other parameters of Volume depend on the SR (although the stepsize-restricted scheme935

with no safe rule is often good), except τmin and m that are always best set to 1e-4 and936

0.1, respectively. Another interesting observation is that, while Volume does have several937

parameters, it does seem that they operate quite independently of each other, as changing938

one of them always has a similar effect irrespective of the others. We also mention that for939

ColorTV the parameters cy and cr have little impact on the performance, whereas cg plays940

an important role and it significantly influences the quality of the results. As for FumeroTV,941

σ∞ and η2 have hardly any impact, and we arbitrarily set them to 1e-4 and 50, respectively.942

Polyak ColorTV FumeroTV
βi β0 cg cy cr β0 r1 η1

0.01 0.1 50 400 50 0.1 150 50

Volume [10] [100]

τ0 10 1 1

τf .8 .8 .8 [.9]

τi 200 [100] 100 100 [200]

pr {di, di−1} [di−1] gi gi [di−1]

sg sr0 [srs] sr0 sr0 [drs]

1.5 1.5 1 50 50 1.99 200 250

STSubgrad [0.01] [1.5] [50] [150]

sg sr0 sr0 [srs] sr0

1.5 1.99 50 100 50 1.99 300 300

Incremental [0.1] [1.5] [10] [400] [1.5] [50] [100]

χ 1e-3 [1e-2] 1e-3 1e-3

sg sr0 [srs] sr0 [srs] sr0

Table 2 Optimal parameters for the Flow Relaxation

In PDSM, the only crucial value is F , used to compute the optimal value of γ in (25). We943

found its best value to be 1e2 and 1e3 for SA and WA, respectively. The choice has a large944

impact on performances, which significantly worsen for values far from these.945

Results for the KR. The best parameters for the KR are reported in Table 3. Although946

the best values are in general different from the FR, confirming the (unfortunate) need for947

problem-specific parameter tuning, similar observations as in that case can be made. For948

instance, for Volume, the parameters were still more or less independent from each other, and949

τmin and m were still hardly impacting, with the values 1e-4 and 0.1 still very adequate. For950

ColorTV, results are again quite stable varying cy . Yet, differences can be noted: for instance,951

for FR cg is clearly the most significant parameter and dictates most of the performance952

variations, while for the KR the relationship between the two parameters cr and cg and the953

results is less clear. Similarly, for FumeroTV some settings are conserved: σ∞ and η2 have954

very little effect and can be set to 1e-4 and 50, respectively. Other cases were different: for955

instance the parameters η1, r1 and β0 were more independent on each other than in the FR.956

The parameters of Primal-Dual showed to be quite independent from the underlying957

Lagrangian approach, with the best value of F still being 1e2 for SA and 1e3 for WA. This958

confirms the higher overall robustness of the approach.959

We terminate the Appendix with a short table detailing which of the variants of SM960

that we tested have a formal proof of convergence and where it can be found, indicating the961
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Polyak ColorTV FumeroTV
βi β0 cg cy cr β0 r1 η1

Volume

0.1 0.1 50 50 50 0.1 10 10

[10] [50] [50]

τ0 1 1 1[10]

τf .9 [.8] .8 [.9] .99 [.8]

τi 50 100 [50] 50 [200]

sg dr0 [srs] dr0 [srs] dr0 [drs]

STSubgrad
1.5 .01 50 50 50 1.99 50 250

[.1] [10] [200]

sg sr0 sr0 sr0

Incremental

1.5 1 50 100 50 1.5 100 100

[.1] [.01] [10] [1] [10]

χ 1e-5 [1e-6] 1e-5 1e-5

sg sr0 srs sr0

Table 3 Optimal parameters for the Knapsack Relaxation

references wherein the proofs are given. The columns DR and SR, as usual, indicate which962

ones among the possible defection and stepsize rules are adopted; an entry “any” means963

that the corresponding proof holds for all the rules. Moreover, PR, AS and IN, respectively,964

stands for the strategies: (i) projection, (ii) active set and (iii) incremental.965

DR SR PR AS IN Reference
Primal-Dual no no no [55]

STSubgrad Polyak no no no [58]
STSubgrad FumeroTV no no no [31]
STSubgrad any yes no no [21]
STSubgrad any no no yes [9]
Volume ColorTV no no no [6]
Volume any yes no no [21]

Table 4 Theoretical convergence proofs of the employed SM
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46. Larsson, T., Patriksson, M., Strömberg, A.B.: Ergodic, primal convergence in dual sub-1072

gradient schemes for convex programming. Mathematical Programming 86, 283–3121073

(1999)1074
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